BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 20061180)

  • 21. Infrared spectra of U.S. automobile original finishes. VII. Extended range FT-IR and XRF analyses of inorganic pigments in situ--nickel titanate and chrome titanate.
    Suzuki EM; McDermot MX
    J Forensic Sci; 2006 May; 51(3):532-47. PubMed ID: 16696700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments.
    Suzuki EM; Carrabba M
    J Forensic Sci; 2001 Sep; 46(5):1053-69. PubMed ID: 11569543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrimination of enterobacterial repetitive intergenic consensus PCR types of Campylobacter coli and Campylobacter jejuni by Fourier transform infrared spectroscopy.
    Mouwen DJ; Weijtens MJ; Capita R; Alonso-Calleja C; Prieto M
    Appl Environ Microbiol; 2005 Aug; 71(8):4318-24. PubMed ID: 16085819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings.
    Thoury M; Delaney JK; Rie ER; Palmer M; Morales K; Krueger J
    Appl Spectrosc; 2011 Aug; 65(8):939-51. PubMed ID: 21819784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical Raman spectroscopic discrimination between yellow pigments of the Renaissance.
    Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):14-20. PubMed ID: 21296610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analytical Raman spectroscopic study of an important english oil painting of the 18th Century.
    Edwards HG; Vandenabeele P; Jehlicka J; Benoy TJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():598-602. PubMed ID: 24095770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chapter 3 Studies of complex I by Fourier transform infrared spectroscopy.
    Marshall D; Rich PR
    Methods Enzymol; 2009; 456():53-74. PubMed ID: 19348882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials.
    Hayes PA; Vahur S; Leito I
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():207-13. PubMed ID: 24945861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of infrared matrix-assisted laser desorption ionization samples by Fourier transform infrared attenuated total reflection spectroscopy.
    Laboy JL; Murray KK
    Appl Spectrosc; 2004 Apr; 58(4):451-6. PubMed ID: 17140494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Red Pigments from the Neolithic sites of Çatalhöyük in Turkey and Sheikh-e Abad in Iran.
    Anderson E; Almond MJ; Matthews W; Cinque G; Frogley MD
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():373-83. PubMed ID: 24835941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusion and structure of water in polymers containing N-vinyl-2-pyrrolidone.
    Wan LS; Huang XJ; Xu ZK
    J Phys Chem B; 2007 Feb; 111(5):922-8. PubMed ID: 17266244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species.
    Janbu AO; Møretrø T; Bertrand D; Kohler A
    FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple peak reference method for polarized Fourier transform infrared-attenuated total reflection spectroscopy to determine the three-dimensional orientation of a uniaxially drawn poly(trimethylene 2,6-naphthalate) film.
    Liang Y; Choi KW; Lee HS
    Appl Spectrosc; 2008 Dec; 62(12):1314-21. PubMed ID: 19094389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The analysis of linseed oil by FTIR and FT-Raman].
    Dongye G; Zhou Q; Sun S; Hu G; Wang Q; Hu X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Dec; 20(6):836-7. PubMed ID: 12938486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jāme of Abarqū, central Iran.
    Holakooei P; Karimy AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():419-27. PubMed ID: 25025315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATR and transmission analysis of pigments by means of far infrared spectroscopy.
    Kendix EL; Prati S; Joseph E; Sciutto G; Mazzeo R
    Anal Bioanal Chem; 2009 Jun; 394(4):1023-32. PubMed ID: 19266186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of pollen by vibrational spectroscopy.
    Zimmermann B
    Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of bioscoured cotton fabrics using FT-IR ATR spectroscopy and microscopy techniques.
    Wang Q; Fan X; Gao W; Chen J
    Carbohydr Res; 2006 Sep; 341(12):2170-5. PubMed ID: 16762329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.