These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 200612)
1. Thermodynamics of oxidative phosphorylation in bovine heart submitochondrial particles. Thayer WS; Tu YS; Hinkle PC J Biol Chem; 1977 Dec; 252(23):8455-8. PubMed ID: 200612 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles. Bashford CL; Thayer WS J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873 [TBL] [Abstract][Full Text] [Related]
3. The phosphorylation potential generated by respiring bovine heart submitochondrial particles. Ferguson SJ; Sorgato MC Biochem J; 1977 Nov; 168(2):299-303. PubMed ID: 202265 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA; Berden JA; Kemp A; Slater EC Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915 [TBL] [Abstract][Full Text] [Related]
5. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M; Knox BE; Tsong TY Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470 [TBL] [Abstract][Full Text] [Related]
6. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
7. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer. Hekman C; Matsuno-Yagi A; Hatefi Y Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168 [TBL] [Abstract][Full Text] [Related]
8. Generation of superoxide by the mitochondrial Complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117 [TBL] [Abstract][Full Text] [Related]
9. 2,3-butanedione monoxime unmasks Ca(2+)-induced NADH formation and inhibits electron transport in rat hearts. Scaduto RC; Grotyohann LW Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1839-48. PubMed ID: 11009471 [TBL] [Abstract][Full Text] [Related]
10. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system. de Meis L; Grieco MA; Galina A FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730 [TBL] [Abstract][Full Text] [Related]
11. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Scholes TA; Hinkle PC Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893 [TBL] [Abstract][Full Text] [Related]
12. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. Krishnamoorthy G; Hinkle PC J Biol Chem; 1988 Nov; 263(33):17566-75. PubMed ID: 2846570 [TBL] [Abstract][Full Text] [Related]
13. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ; Doroshow JH J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles. Thayer WS; Hinkle PC J Biol Chem; 1975 Jul; 250(14):5336. PubMed ID: 167010 [TBL] [Abstract][Full Text] [Related]
15. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
16. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential. Sorgato MC; Ferguson SJ; Kell DB; John P Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021 [TBL] [Abstract][Full Text] [Related]
17. 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation. Schäfer G; Onur G Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276 [TBL] [Abstract][Full Text] [Related]
18. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments. Petronilli V; Azzone GF; Pietrobon D Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579 [TBL] [Abstract][Full Text] [Related]
19. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
20. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]