BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 200612)

  • 1. Thermodynamics of oxidative phosphorylation in bovine heart submitochondrial particles.
    Thayer WS; Tu YS; Hinkle PC
    J Biol Chem; 1977 Dec; 252(23):8455-8. PubMed ID: 200612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphorylation potential generated by respiring bovine heart submitochondrial particles.
    Ferguson SJ; Sorgato MC
    Biochem J; 1977 Nov; 168(2):299-303. PubMed ID: 202265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer.
    Hekman C; Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,3-butanedione monoxime unmasks Ca(2+)-induced NADH formation and inhibits electron transport in rat hearts.
    Scaduto RC; Grotyohann LW
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1839-48. PubMed ID: 11009471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L; Grieco MA; Galina A
    FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase.
    Krishnamoorthy G; Hinkle PC
    J Biol Chem; 1988 Nov; 263(33):17566-75. PubMed ID: 2846570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles.
    Thayer WS; Hinkle PC
    J Biol Chem; 1975 Jul; 250(14):5336. PubMed ID: 167010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation.
    Schäfer G; Onur G
    Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.