BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2006139)

  • 1. Electron redistribution on binding of a substrate to an enzyme: folate and dihydrofolate reductase.
    Bajorath J; Kitson DH; Fitzgerald G; Andzelm J; Kraut J; Hagler AT
    Proteins; 1991; 9(3):217-24. PubMed ID: 2006139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme polarization of substrates of dihydrofolate reductase by different theoretical methods.
    Greatbanks SP; Gready JE; Limaye AC; Rendell AP
    Proteins; 1999 Nov; 37(2):157-65. PubMed ID: 10584062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the electron density of the cofactor NADPH on binding to E. coli dihydrofolate reductase.
    Bajorath J; Li ZQ; Fitzgerald G; Kitson DH; Farnum M; Fine RM; Kraut J; Hagler AT
    Proteins; 1991; 11(4):263-270. PubMed ID: 1758881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies on the dihydrofolate reductase mechanism: electronic polarization of bound substrates.
    Bajorath J; Kraut J; Li ZQ; Kitson DH; Hagler AT
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6423-6. PubMed ID: 1862073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    J Mol Biol; 2003 Mar; 327(2):549-60. PubMed ID: 12628257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+.
    Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF
    Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein.
    Bradrick TD; Beechem JM; Howell EE
    Biochemistry; 1996 Sep; 35(35):11414-24. PubMed ID: 8784197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase.
    Shrimpton P; Mullaney A; Allemann RK
    Proteins; 2003 May; 51(2):216-23. PubMed ID: 12660990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational flexibility and protein specificity.
    Roberts GC
    Ciba Found Symp; 1991; 158():169-82; discussion 182-6, 204-12. PubMed ID: 1935420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How dihydrofolate reductase facilitates protonation of dihydrofolate.
    Rod TH; Brooks CL
    J Am Chem Soc; 2003 Jul; 125(29):8718-9. PubMed ID: 12862454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.
    Dams T; Auerbach G; Bader G; Jacob U; Ploom T; Huber R; Jaenicke R
    J Mol Biol; 2000 Mar; 297(3):659-72. PubMed ID: 10731419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis.
    Strader MB; Chopra S; Jackson M; Smiley RD; Stinnett L; Wu J; Howell EE
    Biochemistry; 2004 Jun; 43(23):7403-12. PubMed ID: 15182183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis.
    Maglia G; Allemann RK
    J Am Chem Soc; 2003 Nov; 125(44):13372-3. PubMed ID: 14583029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate.
    Senkovich O; Schormann N; Chattopadhyay D
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.