These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20061479)

  • 1. Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1.
    Marín M; Pérez-Pantoja D; Donoso R; Wray V; González B; Pieper DH
    J Bacteriol; 2010 Mar; 192(6):1543-52. PubMed ID: 20061479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: cloning, characterization, and analysis of sequences encoding 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.
    Göbel M; Kassel-Cati K; Schmidt E; Reineke W
    J Bacteriol; 2002 Jan; 184(1):216-23. PubMed ID: 11741863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.
    Kaschabek SR; Kuhn B; Müller D; Schmidt E; Reineke W
    J Bacteriol; 2002 Jan; 184(1):207-15. PubMed ID: 11741862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and catalytic mechanism of 4-methylmuconolactone methylisomerase.
    Marín M; Heinz DW; Pieper DH; Klink BU
    J Biol Chem; 2009 Nov; 284(47):32709-16. PubMed ID: 19801657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1.
    Cámara B; Nikodem P; Bielecki P; Bobadilla R; Junca H; Pieper DH
    J Bacteriol; 2009 Aug; 191(15):4905-15. PubMed ID: 19465655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.
    Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH
    J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of 4-methylmuconolactone methylisomerase, a novel enzyme of the modified 3-oxoadipate pathway in the gram-negative bacterium Alcaligenes eutrophus JMP 134.
    Pieper DH; Stadler-Fritzsche K; Knackmuss HJ; Engesser KH; Bruce NC; Cain RB
    Biochem J; 1990 Oct; 271(2):529-34. PubMed ID: 2241929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The modified beta-ketoadipate pathway in Rhodococcus rhodochrous N75: enzymology of 3-methylmuconolactone metabolism.
    Cha CJ; Cain RB; Bruce NC
    J Bacteriol; 1998 Dec; 180(24):6668-73. PubMed ID: 9852013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity.
    Eulberg D; Lakner S; Golovleva LA; Schlömann M
    J Bacteriol; 1998 Mar; 180(5):1072-81. PubMed ID: 9495744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-substituted muconolactones.
    Prucha M; Peterseim A; Timmis KN; Pieper DH
    Eur J Biochem; 1996 Apr; 237(2):350-6. PubMed ID: 8647072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli.
    Ismail W; El-Said Mohamed M; Wanner BL; Datsenko KA; Eisenreich W; Rohdich F; Bacher A; Fuchs G
    Eur J Biochem; 2003 Jul; 270(14):3047-54. PubMed ID: 12846838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone.
    Erb RW; Timmis KN; Pieper DH
    Gene; 1998 Jan; 206(1):53-62. PubMed ID: 9461415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis.
    Zeman I; Neboháčová M; Gérecová G; Katonová K; Jánošíková E; Jakúbková M; Centárová I; Dunčková I; Tomáška L; Pryszcz LP; Gabaldón T; Nosek J
    G3 (Bethesda); 2016 Dec; 6(12):4047-4058. PubMed ID: 27707801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of 4-methylmuconolactone methyl-isomerase, a novel enzyme of the modified 3-oxoadipate pathway in nocardioform actinomycetes.
    Bruce NC; Cain RB; Pieper DH; Engesser KH
    Biochem J; 1989 Aug; 262(1):303-12. PubMed ID: 2818569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase.
    Balakrishnan A; Jordan F; Nathan CF
    J Biol Chem; 2013 Jul; 288(30):21688-702. PubMed ID: 23760263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence.
    Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M
    J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
    Jiménez JI; Miñambres B; García JL; Díaz E
    Environ Microbiol; 2002 Dec; 4(12):824-41. PubMed ID: 12534466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of 2,3-dihydroxybenzoate by a novel meta-cleavage pathway.
    Marín M; Plumeier I; Pieper DH
    J Bacteriol; 2012 Aug; 194(15):3851-60. PubMed ID: 22609919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1.
    Nikodem P; Hecht V; Schlömann M; Pieper DH
    J Bacteriol; 2003 Dec; 185(23):6790-800. PubMed ID: 14617643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways.
    Williams PA; Catterall FA; Murray K
    J Bacteriol; 1975 Nov; 124(2):679-85. PubMed ID: 1184575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.