These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 2006176)
1. Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. Braiman MS; Bousché O; Rothschild KJ Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2388-92. PubMed ID: 2006176 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213 [TBL] [Abstract][Full Text] [Related]
3. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that ASP-96 deprotonates during the M----N transition. Bousché O; Braiman M; He YW; Marti T; Khorana HG; Rothschild KJ J Biol Chem; 1991 Jun; 266(17):11063-7. PubMed ID: 2040618 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157 [TBL] [Abstract][Full Text] [Related]
5. Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212. Dioumaev AK; Brown LS; Needleman R; Lanyi JK Biochemistry; 1999 Aug; 38(31):10070-8. PubMed ID: 10433714 [TBL] [Abstract][Full Text] [Related]
6. Role of aspartate-96 in proton translocation by bacteriorhodopsin. Gerwert K; Hess B; Soppa J; Oesterhelt D Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4943-7. PubMed ID: 2544884 [TBL] [Abstract][Full Text] [Related]
7. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study. Morgan JE; Vakkasoglu AS; Lanyi JK; Gennis RB; Maeda A Biochemistry; 2010 Apr; 49(15):3273-81. PubMed ID: 20232848 [TBL] [Abstract][Full Text] [Related]
8. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. Maeda A; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1992 Jan; 31(2):462-7. PubMed ID: 1731905 [TBL] [Abstract][Full Text] [Related]
9. Structural changes in bacteriorhodopsin during the photocycle measured by time-resolved polarized Fourier transform infrared spectroscopy. Kelemen L; Ormos P Biophys J; 2001 Dec; 81(6):3577-89. PubMed ID: 11721018 [TBL] [Abstract][Full Text] [Related]
11. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn. Nilsson A; Rath P; Olejnik J; Coleman M; Rothschild KJ J Biol Chem; 1995 Dec; 270(50):29746-51. PubMed ID: 8530365 [TBL] [Abstract][Full Text] [Related]
12. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [TBL] [Abstract][Full Text] [Related]
13. Infrared study of the L, M, and N intermediates of bacteriorhodopsin using the photoreaction of M. Ormos P; Chu K; Mourant J Biochemistry; 1992 Aug; 31(30):6933-7. PubMed ID: 1637826 [TBL] [Abstract][Full Text] [Related]
14. Structure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Morgan JE; Vakkasoglu AS; Lanyi JK; Lugtenburg J; Gennis RB; Maeda A Biophys J; 2012 Aug; 103(3):444-452. PubMed ID: 22947860 [TBL] [Abstract][Full Text] [Related]
15. A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57-->Asp. Evidence for proton translocation without Schiff base deprotonation. Sonar S; Marti T; Rath P; Fischer W; Coleman M; Nilsson A; Khorana HG; Rothschild KJ J Biol Chem; 1994 Nov; 269(46):28851-8. PubMed ID: 7961844 [TBL] [Abstract][Full Text] [Related]
16. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559 [TBL] [Abstract][Full Text] [Related]
17. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle. Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377 [TBL] [Abstract][Full Text] [Related]
18. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds. Rothschild KJ; He YW; Sonar S; Marti T; Khorana HG J Biol Chem; 1992 Jan; 267(3):1615-22. PubMed ID: 1730706 [TBL] [Abstract][Full Text] [Related]
19. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes. Fahmy K; Weidlich O; Engelhard M; Sigrist H; Siebert F Biochemistry; 1993 Jun; 32(22):5862-9. PubMed ID: 8504106 [TBL] [Abstract][Full Text] [Related]
20. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]