These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20061789)

  • 1. Energy minimization methods applied to riboswitches: a perspective and challenges.
    Barash D; Gabdank I
    RNA Biol; 2010; 7(1):90-7. PubMed ID: 20061789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch.
    Rentmeister A; Mayer G; Kuhn N; Famulok M
    Nucleic Acids Res; 2007; 35(11):3713-22. PubMed ID: 17517779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting riboswitch regulation on a genomic scale.
    Barrick JE
    Methods Mol Biol; 2009; 540():1-13. PubMed ID: 19381548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach.
    Lang K; Rieder R; Micura R
    Nucleic Acids Res; 2007; 35(16):5370-8. PubMed ID: 17693433
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Vargas-Junior V; Antunes D; Guimarães AC; Caffarena E
    RNA Biol; 2022; 19(1):90-103. PubMed ID: 34989318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient Minimum Free Energy Structure-Based Search Method for Riboswitch Identification Based on Inverse RNA Folding.
    Drory Retwitzer M; Kifer I; Sengupta S; Yakhini Z; Barash D
    PLoS One; 2015; 10(7):e0134262. PubMed ID: 26230932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.
    Corbino KA; Barrick JE; Lim J; Welz R; Tucker BJ; Puskarz I; Mandal M; Rudnick ND; Breaker RR
    Genome Biol; 2005; 6(8):R70. PubMed ID: 16086852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs.
    Wachter A; Tunc-Ozdemir M; Grove BC; Green PJ; Shintani DK; Breaker RR
    Plant Cell; 2007 Nov; 19(11):3437-50. PubMed ID: 17993623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
    Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG
    Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiamine pyrophosphate riboswitch in some representative plant species: a bioinformatics study.
    Yadav S; Swati D; Chandrasekharan H
    J Comput Biol; 2015 Jan; 22(1):1-9. PubMed ID: 25243980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of riboswitches.
    Clote P
    Methods Enzymol; 2015; 553():287-312. PubMed ID: 25726470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection of conformational probes for riboswitches.
    Mayer G; Famulok M
    Methods Mol Biol; 2009; 540():291-300. PubMed ID: 19381568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of riboswitch regulation studied by in vitro transcription.
    Wickiser JK
    Methods Mol Biol; 2009; 540():53-63. PubMed ID: 19381552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine.
    Sudarsan N; Cohen-Chalamish S; Nakamura S; Emilsson GM; Breaker RR
    Chem Biol; 2005 Dec; 12(12):1325-35. PubMed ID: 16356850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.