BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20061795)

  • 1. A genome wide view of hunchback-like-1 targets.
    Kai Z; Pasquinelli AE
    Cell Cycle; 2010 Jan; 9(2):230-1. PubMed ID: 20061795
    [No Abstract]   [Full Text] [Related]  

  • 2. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs.
    Abrahante JE; Daul AL; Li M; Volk ML; Tennessen JM; Miller EA; Rougvie AE
    Dev Cell; 2003 May; 4(5):625-37. PubMed ID: 12737799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target.
    Lin SY; Johnson SM; Abraham M; Vella MC; Pasquinelli A; Gamberi C; Gottlieb E; Slack FJ
    Dev Cell; 2003 May; 4(5):639-50. PubMed ID: 12737800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging and cancer: killing two birds with one worm.
    Brunet A
    Nat Genet; 2007 Nov; 39(11):1306-7. PubMed ID: 17968345
    [No Abstract]   [Full Text] [Related]  

  • 5. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms.
    Tullet JMA; Green JW; Au C; Benedetto A; Thompson MA; Clark E; Gilliat AF; Young A; Schmeisser K; Gems D
    Aging Cell; 2017 Oct; 16(5):1191-1194. PubMed ID: 28612944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activation of the oxidative stress response transcription factor SKN-1 in Caenorhabditis elegans by mitis group streptococci.
    Naji A; Houston Iv J; Skalley Rog C; Al Hatem A; Rizvi S; van der Hoeven R
    PLoS One; 2018; 13(8):e0202233. PubMed ID: 30114261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control.
    Zhao L; Wan H; Liu Q; Wang D
    Part Fibre Toxicol; 2017 Jul; 14(1):27. PubMed ID: 28728598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor.
    Niwa R; Hada K; Moliyama K; Ohniwa RL; Tan YM; Olsson-Carter K; Chi W; Reinke V; Slack FJ
    Cell Cycle; 2009 Dec; 8(24):4147-54. PubMed ID: 19923914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tiny RNA world.
    Ruvkun GB
    Harvey Lect; 2003-2004; 99():1-21. PubMed ID: 15984549
    [No Abstract]   [Full Text] [Related]  

  • 10. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein.
    Blum ES; Abraham MC; Yoshimura S; Lu Y; Shaham S
    Science; 2012 Feb; 335(6071):970-3. PubMed ID: 22363008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. acn-1, a C. elegans homologue of ACE, genetically interacts with the let-7 microRNA and other heterochronic genes.
    Metheetrairut C; Ahuja Y; Slack FJ
    Cell Cycle; 2017 Oct; 16(19):1800-1809. PubMed ID: 28933985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A passport to neurotransmitter identity.
    Smidt MP; Burbach JP
    Genome Biol; 2009; 10(7):229. PubMed ID: 19591649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction between the WD40 repeat protein WDR-23 and SKN-1/Nrf inhibits binding to target DNA.
    Leung CK; Hasegawa K; Wang Y; Deonarine A; Tang L; Miwa J; Choe KP
    Mol Cell Biol; 2014 Aug; 34(16):3156-67. PubMed ID: 24912676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring transcriptional regulatory networks in the worm.
    Farkas IJ; Beg QK; Oltvai ZN
    Cell; 2006 Jun; 125(6):1032-4. PubMed ID: 16777593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans.
    Niwa R; Zhou F; Li C; Slack FJ
    Dev Biol; 2008 Mar; 315(2):418-25. PubMed ID: 18262516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative regulation of development but independent control of metabolism by two epidermis-specific transcription factors in Caenorhabditis elegans.
    Shao J; He K; Wang H; Ho WS; Ren X; An X; Wong MK; Yan B; Xie D; Stamatoyannopoulos J; Zhao Z
    J Biol Chem; 2013 Nov; 288(46):33411-26. PubMed ID: 24097988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged exposure to multi-walled carbon nanotubes dysregulates intestinal mir-35 and its direct target MAB-3 in nematode Caenorhabditis elegans.
    Zhao Y; Jin L; Wang Y; Kong Y; Wang D
    Sci Rep; 2019 Aug; 9(1):12144. PubMed ID: 31434956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeing elegance in gene regulatory networks of the worm.
    Van Nostrand EL; Kim SK
    Curr Opin Genet Dev; 2011 Dec; 21(6):776-86. PubMed ID: 21963133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DM domain transcription factor MAB-3 regulates male hypersensitivity to oxidative stress in Caenorhabditis elegans.
    Inoue H; Nishida E
    Mol Cell Biol; 2010 Jul; 30(14):3453-9. PubMed ID: 20498281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel genetics of regulatory sequences using scalable genome editing in vivo.
    Froehlich JJ; Uyar B; Herzog M; Theil K; Glažar P; Akalin A; Rajewsky N
    Cell Rep; 2021 Apr; 35(2):108988. PubMed ID: 33852857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.