These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2006195)

  • 21. Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1995 Sep; 34(38):12161-9. PubMed ID: 7547956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton transport by a bacteriorhodopsin mutant, aspartic acid-85-->asparagine, initiated in the unprotonated Schiff base state.
    Dickopf S; Alexiev U; Krebs MP; Otto H; Mollaaghababa R; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11519-23. PubMed ID: 8524795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrelations of M-intermediates in bacteriorhodopsin photocycle.
    Drachev LA; Kaulen AD; Komrakov AYu
    FEBS Lett; 1992 Nov; 313(3):248-50. PubMed ID: 1446744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin.
    Richter HT; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212.
    Braiman MS; Mogi T; Marti T; Stern LJ; Khorana HG; Rothschild KJ
    Biochemistry; 1988 Nov; 27(23):8516-20. PubMed ID: 2851326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoreactions of bacteriorhodopsin at acid pH.
    Váró G; Lanyi JK
    Biophys J; 1989 Dec; 56(6):1143-51. PubMed ID: 2611328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of individual genetic substitutions of arginine residues on the deprotonation and reprotonation kinetics of the Schiff base during the bacteriorhodopsin photocycle.
    Lin GC; el-Sayed MA; Marti T; Stern LJ; Mogi T; Khorana HG
    Biophys J; 1991 Jul; 60(1):172-8. PubMed ID: 1883936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping.
    Ormos P
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):473-7. PubMed ID: 1846442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A.
    Rath P; Marti T; Sonar S; Khorana HG; Rothschild KJ
    J Biol Chem; 1993 Aug; 268(24):17742-9. PubMed ID: 8349659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements.
    Zimányi L; Cao Y; Chang M; Ni B; Needleman R; Lanyi JK
    Photochem Photobiol; 1992 Dec; 56(6):1049-55. PubMed ID: 1337212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation.
    Marti T; Otto H; Mogi T; Rösselet SJ; Heyn MP; Khorana HG
    J Biol Chem; 1991 Apr; 266(11):6919-27. PubMed ID: 1849896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin.
    Drachev LA; Kaulen AD; Komrakov AYu
    Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional significance of a protein conformation change at the cytoplasmic end of helix F during the bacteriorhodopsin photocycle.
    Brown LS; Váró G; Needleman R; Lanyi JK
    Biophys J; 1995 Nov; 69(5):2103-11. PubMed ID: 8580354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the N intermediate of bacteriorhodopsin revealed by x-ray diffraction.
    Kamikubo H; Kataoka M; Váró G; Oka T; Tokunaga F; Needleman R; Lanyi JK
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1386-90. PubMed ID: 8643641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inversion of proton translocation in bacteriorhodopsin mutants D85N, D85T, and D85,96N.
    Tittor J; Schweiger U; Oesterhelt D; Bamberg E
    Biophys J; 1994 Oct; 67(4):1682-90. PubMed ID: 7819500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin.
    Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK
    Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.