These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20062157)

  • 1. Optical means for enhancing the sensitivity of a tri-alkali photocathode.
    Novice MA; Vine J
    Appl Opt; 1967 Jul; 6(7):1171-8. PubMed ID: 20062157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference-enhanced photoemission.
    Love JA; Sizelove JR
    Appl Opt; 1968 Jan; 7(1):11-5. PubMed ID: 20062395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a multiple reflective translucent photocathode.
    Sizelove JR; Love JA
    Appl Opt; 1967 Mar; 6(3):443-6. PubMed ID: 20057776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum efficiencies of imaging detectors with alkali halide photocathodes. 1: Microchannel plates with separate and integral Csl photocathodes.
    Carruthers GR
    Appl Opt; 1987 Jul; 26(14):2925-30. PubMed ID: 20489984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical devices to increase photocathode quantum efficiency.
    Gunter WD; Grant GR; Shaw SA
    Appl Opt; 1970 Feb; 9(2):251-7. PubMed ID: 20076179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of translucent and opaque photocathodes.
    Sizelove JR; Love Iii JA
    Appl Opt; 1966 Sep; 5(9):1419-22. PubMed ID: 20057561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.
    Hao G; Liu J; Ke S
    Appl Opt; 2017 Dec; 56(35):9757-9761. PubMed ID: 29240122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesh-based semitransparent photocathodes.
    Carruthers GR
    Appl Opt; 1975 Jul; 14(7):1667-72. PubMed ID: 20154888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of exponential doping structure on the performance of GaAs photocathodes.
    Niu J; Zhang Y; Chang B; Yang Z; Xiong Y
    Appl Opt; 2009 Oct; 48(29):5445-50. PubMed ID: 19823224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer.
    Jin M; Chen X; Hao G; Chang B; Cheng H
    Appl Opt; 2015 Oct; 54(28):8332-8. PubMed ID: 26479605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical absorption and photoemission in semitransparent and opaque Cs(3)Sb photocathodes.
    Johnson SM
    Appl Opt; 1993 May; 32(13):2262-5. PubMed ID: 20820377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoemission performance of thin graded structure AlGaN photocathode.
    Hao G; Shi F; Cheng H; Ren B; Chang B
    Appl Opt; 2015 Apr; 54(10):2572-6. PubMed ID: 25967161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Characterization of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors.
    Mohanty SK; Krasilnikov M; Oppelt A; Stephan F; Sertore D; Monaco L; Pagani C; Hillert W
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy.
    Shoute LC; Bergren AJ; Mahmoud AM; Harris KD; McCreery RL
    Appl Spectrosc; 2009 Feb; 63(2):133-40. PubMed ID: 19215642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet angular response of cesium-telluride photocathodes.
    Johnson SM
    Appl Opt; 1992 May; 31(13):2332-42. PubMed ID: 20720898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical interference, contrast-enhanced electroluminescent device.
    Dobrowolski JA; Sullivan BT; Bajcar RC
    Appl Opt; 1992 Oct; 31(28):5988-96. PubMed ID: 20733799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lateral diffusion of photoelectrons in the reflection-mode varied-doping AlGaN photocathode on resolution.
    Wang H; Zhang J; Hou D; Hao J; Wang L; Sai Y
    Appl Opt; 2021 Sep; 60(25):7658-7663. PubMed ID: 34613235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ion beam surface treatment on the emission performance of photocathodes.
    Liu Y; Li F; Tian H; Wang G; Wang X
    Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity microchannel plate detectors for space extreme ultraviolet missions.
    Yoshioka K; Homma T; Murakami G; Yoshikawa I
    Rev Sci Instrum; 2012 Aug; 83(8):083117. PubMed ID: 22938284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of MgF(2) and LiF Photocathodes in the Extreme Ultraviolet.
    Lapson LB; Timothy JG
    Appl Opt; 1973 Feb; 12(2):388-93. PubMed ID: 20125295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.