These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 20062422)
1. An algebraic solution for the small lens null compensator. Holleran RT Appl Opt; 1968 Jan; 7(1):137-44. PubMed ID: 20062422 [TBL] [Abstract][Full Text] [Related]
2. Ross null test for conic mirrors. Stoltzmann DE; Ceravolo P Appl Opt; 1993 Mar; 32(7):1189-99. PubMed ID: 20820252 [TBL] [Abstract][Full Text] [Related]
3. [A review of mathematical descriptors of corneal asphericity]. Gatinel D; Haouat M; Hoang-Xuan T J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125 [TBL] [Abstract][Full Text] [Related]
4. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres. Xue S; Chen S; Tie G Opt Express; 2018 Nov; 26(24):31172-31189. PubMed ID: 30650707 [TBL] [Abstract][Full Text] [Related]
5. Mathematical models for describing the shape of the in vitro unstretched human crystalline lens. Smith G; Atchison DA; Iskander DR; Jones CE; Pope JM Vision Res; 2009 Oct; 49(20):2442-52. PubMed ID: 19647765 [TBL] [Abstract][Full Text] [Related]
6. Testing of large-aperture aspheric mirrors using a single coated lens. Ye L; Wang W; Zhang X; Xu M; Zhang J; Zheng L Appl Opt; 2020 May; 59(15):4577-4582. PubMed ID: 32543565 [TBL] [Abstract][Full Text] [Related]
7. Axial tolerance in the position of aberration compensators placed in a converging beam. Morales A; Servin M; Malacara D Appl Opt; 1996 Apr; 35(10):1590-2. PubMed ID: 21085277 [TBL] [Abstract][Full Text] [Related]
9. Approximating ocular surfaces by generalised conic curves. Kasprzak HT; Robert Iskander D Ophthalmic Physiol Opt; 2006 Nov; 26(6):602-9. PubMed ID: 17040425 [TBL] [Abstract][Full Text] [Related]
10. Transmittance ratio of a compensator. Kothiyal MP Appl Opt; 1975 Dec; 14(12):2935-9. PubMed ID: 20155135 [TBL] [Abstract][Full Text] [Related]
11. Theoretical and experimental study of a catadioptric compensator for an aspheric surface. Zhang Y; Wu Y; Fan B Appl Opt; 2013 Sep; 52(27):6834-9. PubMed ID: 24085185 [TBL] [Abstract][Full Text] [Related]
13. Quasi-null lens optical system for the fabrication of an oblate convex ellipsoidal mirror: application to the Wide Angle Camera of the Rosetta space mission. Pelizzo MG; Da Deppo V; Naletto G; Ragazzoni R; Novi A Appl Opt; 2006 Aug; 45(24):6119-25. PubMed ID: 16892112 [TBL] [Abstract][Full Text] [Related]
14. Diffraction-limited geodesic lens: a search for substitute contours. Myer JH; Ramer OG Appl Opt; 1981 Feb; 20(3):412-6. PubMed ID: 20309126 [TBL] [Abstract][Full Text] [Related]
17. Quantitative test for concave aspheric surfaces using a Babinet compensator. Saxena AK Appl Opt; 1979 Aug; 18(16):2897-901. PubMed ID: 20212767 [TBL] [Abstract][Full Text] [Related]
18. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator. Servin M; Malacara D; Rodriguez-Vera R Appl Opt; 1994 May; 33(13):2589-95. PubMed ID: 20885612 [TBL] [Abstract][Full Text] [Related]
19. Sub-Nyquist null aspheric testing using a computer-stored compensator. Servin M; Malacara D; Malacara Z; Vlad VI Appl Opt; 1994 Jul; 33(19):4103-8. PubMed ID: 20935757 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic null ellipsometer using a variable retarder. Watkins LR; Shamailov SS Appl Opt; 2011 Jan; 50(1):50-2. PubMed ID: 21221159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]