These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20062488)

  • 1. Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines.
    Löffler M; Beyrau F; Leipertz A
    Appl Opt; 2010 Jan; 49(1):37-49. PubMed ID: 20062488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements.
    Braeuer A; Beyrau F; Leipertz A
    Appl Opt; 2006 Jul; 45(20):4982-9. PubMed ID: 16807609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines.
    Joshi S; Olsen DB; Dumitrescu C; Puzinauskas PV; Yalin AP
    Appl Spectrosc; 2009 May; 63(5):549-54. PubMed ID: 19470212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamical instability of spark-ignited engines.
    Kantor JC
    Science; 1984 Jun; 224(4654):1233-5. PubMed ID: 17819493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ignition study of acetone/air mixtures by using laser-induced spark.
    Tihay V; Gillard P; Blanc D
    J Hazard Mater; 2012 Mar; 209-210():372-8. PubMed ID: 22305602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release.
    Knapp M; Luczak A; Schlüter H; Beushausen V; Hentschel W; Andresen P
    Appl Opt; 1996 Jul; 35(21):4009-17. PubMed ID: 21102804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.
    Zigan L; Trost J; Leipertz A
    Appl Opt; 2016 Feb; 55(6):1453-60. PubMed ID: 26906600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparatory study for detection of nickel in industrial flue gas by excimer laser-induced fragmentation fluorescence spectroscopy.
    Gottwald U; Monkhouse P
    Appl Spectrosc; 2003 Feb; 57(2):117-23. PubMed ID: 14610946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color-absorption sensor for time-resolved measurements of gasoline concentration and temperature.
    Pyun SH; Porter JM; Jeffries JB; Hanson RK; Montoya JC; Allen MG; Sholes KR
    Appl Opt; 2009 Nov; 48(33):6492-500. PubMed ID: 19935971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-cylinder temperature measurements via time-correlated single-photon counting of toluene laser-induced fluorescence through a fiber-based sensor.
    Friesen E; Gessenhardt C; Kaiser SA; Dreier T; Schulz C
    Opt Lett; 2012 Dec; 37(24):5244-6. PubMed ID: 23258066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying the influence of single droplets on fuel/air ignition in a high-pressure shock tube.
    Niegemann P; Herzler J; Fikri M; Schulz C
    Rev Sci Instrum; 2020 Oct; 91(10):105107. PubMed ID: 33138609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal CH
    Tang W; Silva M; Hakimov K; Zhang X; Hlaing P; Cenker E; AlRamadan AS; Turner JWG; Farooq A; Im HG; Sarathy SM
    ACS Omega; 2024 Mar; 9(10):11255-11265. PubMed ID: 38496931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiment on the Influence of Residual Exhaust Gas on the Combustion Characteristics of a Miniature Engine with Platinum Wire Ignition.
    Shang H; Zhang L; Tang Z; Chen X
    ACS Omega; 2022 Mar; 7(8):7393-7402. PubMed ID: 35252729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature fields during the development of autoignition in a rapid compression machine.
    Griffiths JF; MacNamara JP; Mohamed C; Whitaker BJ; Pan J; Sheppard CG
    Faraday Discuss; 2001; (119):287-303; discussion 353-70. PubMed ID: 11877997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy.
    Lackner M; Charareh S; Winter F; Iskra K; Rüdisser D; Neger T; Kopecek H; Wintner E
    Opt Express; 2004 Sep; 12(19):4546-57. PubMed ID: 19484006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-pulse, two-line temperature-measurement technique using KrF laser-induced O(2) fluorescence.
    Grinstead JH; Laufer G; McDaniel JC
    Appl Opt; 1995 Aug; 34(24):5501-12. PubMed ID: 21060372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence lifetimes of formaldehyde (H2CO) in the A1A2 --> X1A2 band system at elevated temperatures and pressures.
    Metz T; Bai X; Ossler F; Aldén M
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1043-53. PubMed ID: 15084321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence.
    Storch M; Lind S; Will S; Zigan L
    Appl Opt; 2016 Oct; 55(30):8532-8540. PubMed ID: 27828132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines.
    Issondj Banta NJ; Patrick N; Offole F; Mouangue R
    Heliyon; 2024 May; 10(9):e30497. PubMed ID: 38765124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.