These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 20062508)

  • 1. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.
    Barber ZW; Babbitt WR; Kaylor B; Reibel RR; Roos PA
    Appl Opt; 2010 Jan; 49(2):213-9. PubMed ID: 20062508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabroadband optical chirp linearization for precision metrology applications.
    Roos PA; Reibel RR; Berg T; Kaylor B; Barber ZW; Babbitt WR
    Opt Lett; 2009 Dec; 34(23):3692-4. PubMed ID: 19953164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.
    Baumann E; Giorgetta FR; Coddington I; Sinclair LC; Knabe K; Swann WC; Newbury NR
    Opt Lett; 2013 Jun; 38(12):2026-8. PubMed ID: 23938965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision and accuracy testing of FMCW ladar-based length metrology.
    Mateo AB; Barber ZW
    Appl Opt; 2015 Jul; 54(19):6019-24. PubMed ID: 26193146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop.
    Qin J; Zhou Q; Xie W; Xu Y; Yu S; Liu Z; Tong Yt; Dong Y; Hu W
    Opt Lett; 2015 Oct; 40(19):4500-3. PubMed ID: 26421566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb.
    Barber ZW; Giorgetta FR; Roos PA; Coddington I; Dahl JR; Reibel RR; Greenfield N; Newbury NR
    Opt Lett; 2011 Apr; 36(7):1152-4. PubMed ID: 21479013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speckle phase noise in coherent laser ranging: fundamental precision limitations.
    Baumann E; Deschênes JD; Giorgetta FR; Swann WC; Coddington I; Newbury NR
    Opt Lett; 2014 Aug; 39(16):4776-9. PubMed ID: 25121872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar.
    Mateo AB; Barber ZW
    Appl Opt; 2015 Jul; 54(19):5911-6. PubMed ID: 26193132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of sparse frequency linearly frequency modulated ladar signals modeling.
    Chimenti RV; Dierking MP; Powers PE; Haus JW; Bailey ES
    Opt Express; 2010 Jul; 18(15):15400-7. PubMed ID: 20720919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio.
    Gao H; Lei C; Chen M; Xing F; Chen H; Xie S
    Opt Express; 2013 Oct; 21(20):23107-15. PubMed ID: 24104226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
    Junius D; Dau T
    Hear Res; 2005 Jul; 205(1-2):53-67. PubMed ID: 15953515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method.
    Pan H; Zhang F; Shi C; Qu X
    Appl Opt; 2017 Aug; 56(24):6956-6961. PubMed ID: 29048041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry.
    Xia H; Zhang C
    Opt Express; 2010 Mar; 18(5):4118-29. PubMed ID: 20389425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz.
    Wang S; Zhang L; Lu Z; Zhang H; Qiao M; Idrees N; Saqlain M; Zheng S; Jin X; Zhang X; Yu X
    Opt Express; 2021 Jun; 29(13):19240-19246. PubMed ID: 34266037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shot noise statistics and information theory of sensitivity limits in frequency-modulated continuous-wave ladar.
    Barber ZW; Dahl JR; Sharpe TL; Erkmen BI
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1335-41. PubMed ID: 24323147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance.
    Pan H; Qu X; Zhang F
    Opt Express; 2018 Jun; 26(12):15186-15198. PubMed ID: 30114769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance.
    Karlsson CJ; Olsson FA
    Appl Opt; 1999 May; 38(15):3376-86. PubMed ID: 18319935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture.
    Krause BW; Tiemann BG; Gatt P
    Appl Opt; 2012 Dec; 51(36):8745-61. PubMed ID: 23262614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.
    Li D; Lv X; Bowlan P; Du R; Zeng S; Luo Q
    Opt Express; 2009 Sep; 17(19):17070-81. PubMed ID: 19770925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.
    Brown GG; Dian BC; Douglass KO; Geyer SM; Shipman ST; Pate BH
    Rev Sci Instrum; 2008 May; 79(5):053103. PubMed ID: 18513057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.