BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20062850)

  • 1. Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na)2)3]Cl2.
    Coogan MP; Court JB; Gray VL; Hayes AJ; Lloyd SH; Millet CO; Pope SJ; Lloyd D
    Photochem Photobiol Sci; 2010 Jan; 9(1):103-9. PubMed ID: 20062850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A water-soluble luminescence oxygen sensor.
    Castellano FN; Lakowicz JR
    Photochem Photobiol; 1998 Feb; 67(2):179-83. PubMed ID: 9487796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation.
    Zhou C; Zhao WX; You FT; Geng ZX; Peng HS
    ACS Sens; 2019 Apr; 4(4):984-991. PubMed ID: 30859818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual sensing of oxygen and temperature using quantum dots and a ruthenium complex.
    Jorge PA; Maule C; Silva AJ; Benrashid R; Santos JL; Farahi F
    Anal Chim Acta; 2008 Jan; 606(2):223-9. PubMed ID: 18082654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorescence Lifetime Imaging of Labile Zn
    Zhang C; Liu M; Liu S; Yang H; Zhao Q; Liu Z; He W
    Inorg Chem; 2018 Sep; 57(17):10625-10632. PubMed ID: 30102519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular and in vivo oxygen sensing using phosphorescent Ir(III) complexes with a modified acetylacetonato ligand.
    Yoshihara T; Hosaka M; Terata M; Ichikawa K; Murayama S; Tanaka A; Mori M; Itabashi H; Takeuchi T; Tobita S
    Anal Chem; 2015 Mar; 87(5):2710-7. PubMed ID: 25634116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O(2)-responsive chemical sensors based on hybrid xerogels that contain fluorinated precursors.
    Bukowski RM; Davenport MD; Titus AH; Bright FV
    Appl Spectrosc; 2006 Sep; 60(9):951-7. PubMed ID: 17002817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A luminescent tetranuclear ruthenium(II) complex as a tracking non-viral gene vector.
    Yu B; Chen Y; Ouyang C; Huang H; Ji L; Chao H
    Chem Commun (Camb); 2013 Jan; 49(8):810-2. PubMed ID: 23235506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of intracellular oxygen and cell metabolism by simultaneous PLIM of phosphorescent TLD1433 and FLIM of NAD(P)H.
    Kalinina S; Breymayer J; Reeß K; Lilge L; Mandel A; Rück A
    J Biophotonics; 2018 Oct; 11(10):e201800085. PubMed ID: 29877627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.
    Fercher A; Borisov SM; Zhdanov AV; Klimant I; Papkovsky DB
    ACS Nano; 2011 Jul; 5(7):5499-508. PubMed ID: 21671589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct observation of triplet state emission of single molecules: single molecule phosphorescence quenching of metalloporphyrin and organometallic complexes by molecular oxygen and their quenching rate distributions.
    Mei E; Vinogradov S; Hochstrasser RM
    J Am Chem Soc; 2003 Oct; 125(43):13198-204. PubMed ID: 14570495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endosomes: guardians against [Ru(Phen)3]2+ photo-action in endothelial cells during in vivo pO2 detection?
    Huntosova V; Stroffekova K; Wagnieres G; Novotova M; Nichtova Z; Miskovsky P
    Metallomics; 2014 Dec; 6(12):2279-89. PubMed ID: 25371090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement.
    Hirakawa Y; Yoshihara T; Kamiya M; Mimura I; Fujikura D; Masuda T; Kikuchi R; Takahashi I; Urano Y; Tobita S; Nangaku M
    Sci Rep; 2015 Dec; 5():17838. PubMed ID: 26644023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells.
    Song B; Vandevyver CD; Chauvin AS; Bünzli JC
    Org Biomol Chem; 2008 Nov; 6(22):4125-33. PubMed ID: 18972043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation.
    Liu J; Liu Y; Bu W; Bu J; Sun Y; Du J; Shi J
    J Am Chem Soc; 2014 Jul; 136(27):9701-9. PubMed ID: 24956326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorescence monitoring of hypoxic microenvironment in solid-tumors to evaluate chemotherapeutic effects using the hypoxia-sensitive iridium (III) coordination compound.
    Zeng Y; Liu Y; Shang J; Ma J; Wang R; Deng L; Guo Y; Zhong F; Bai M; Zhang S; Wu D
    PLoS One; 2015; 10(3):e0121293. PubMed ID: 25786221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-sensitive bis(2-(2'-benzothienyl)pyridinato-N,C(3'))iridium[poly(n-butyl cyanoacrylate]/chitosan nanoparticles and their phosphorescence tumor imaging in vitro and in vivo.
    Zeng Y; Zhang S; Jia M; Liu Y; Shang J; Guo Y; Xu J; Wu D
    Nanoscale; 2013 Dec; 5(24):12633-44. PubMed ID: 24177494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of DNA photocleavage efficiency for [(TL)2Ru(dpp)]Cl2 complexes where TL=2,2'-bipyridine, 1,10-phenanthroline, or 4,7-diphenyl-1,10-phenanthroline.
    Mongelli MT; Heinecke J; Mayfield S; Okyere B; Winkel BS; Brewer KJ
    J Inorg Biochem; 2006 Dec; 100(12):1983-7. PubMed ID: 17095094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing red-emissive ruthenium(II) complex-based luminescent probes for cellular imaging.
    Zhang R; Ye Z; Yin Y; Wang G; Jin D; Yuan J; Piper JA
    Bioconjug Chem; 2012 Apr; 23(4):725-33. PubMed ID: 22435834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Phosphorescence and Fluorescence Lifetime Imaging by Multi-Dimensional TCSPC and Multi-Pulse Excitation.
    Becker W; Shcheslavskiy V; Rück A
    Adv Exp Med Biol; 2017; 1035():19-30. PubMed ID: 29080128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.