These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 20062889)
1. Degradable hollow spheres based on self-assembly inclusion. Meng XW; Qin J; Liu Y; Fan MM; Li BJ; Zhang S; Yu XQ Chem Commun (Camb); 2010 Jan; 46(4):643-5. PubMed ID: 20062889 [TBL] [Abstract][Full Text] [Related]
2. Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin. Meng XW; Ha W; Cheng C; Dong ZQ; Ding LS; Li BJ; Zhang S Langmuir; 2011 Dec; 27(23):14401-7. PubMed ID: 22004252 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of biocompatible hybrid magnetic hollow spheres based on encapsulation strategy. Ha W; Wu H; Ma Y; Fan MM; Peng SL; Ding LS; Zhang S; Li BJ Carbohydr Polym; 2013 Jan; 92(1):523-8. PubMed ID: 23218330 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly of rod-coil polyethylenimine-poly(ethylene glycol)-α-cyclodextrin inclusion complexes into hollow spheres and rod-like particles. Cheng C; Han XJ; Dong ZQ; Liu Y; Li BJ; Zhang S Macromol Rapid Commun; 2011 Dec; 32(24):1965-71. PubMed ID: 22009767 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
6. Self-assembly of beta-cyclodextrin and pluronic into hollow nanospheres in aqueous solution. Qin J; Meng X; Li B; Ha W; Yu X; Zhang S J Colloid Interface Sci; 2010 Oct; 350(2):447-52. PubMed ID: 20674928 [TBL] [Abstract][Full Text] [Related]
7. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. Wang Q; Zhang N; Hu X; Yang J; Du Y J Biomed Mater Res A; 2007 Jul; 82(1):122-8. PubMed ID: 17269140 [TBL] [Abstract][Full Text] [Related]
8. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules. Haque T; Chen H; Ouyang W; Martoni C; Lawuyi B; Urbanska AM; Prakash S Mol Pharm; 2005; 2(1):29-36. PubMed ID: 15804175 [TBL] [Abstract][Full Text] [Related]
9. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin. Ni X; Cheng A; Li J J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments. Cruz MC; Ravagnani SP; Brogna FM; Campana SP; Triviño GC; Lisboa AC; Mei LH Biotechnol Appl Biochem; 2004 Dec; 40(Pt 3):243-53. PubMed ID: 15281914 [TBL] [Abstract][Full Text] [Related]
11. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Cellesi F; Tirelli N; Hubbell JA Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835 [TBL] [Abstract][Full Text] [Related]
12. Polymeric hollow spheres assembled from ALG-g-PNIPAM and β-cyclodextrin for controlled drug release. Li G; Yu N; Gao Y; Tao Q; Liu X Int J Biol Macromol; 2016 Jan; 82():381-6. PubMed ID: 26562555 [TBL] [Abstract][Full Text] [Related]
13. pH-Switchable macroscopic assembly through host-guest inclusion. Yuan QJ; Wang YF; Li JH; Li BJ; Zhang S Macromol Rapid Commun; 2013 Jul; 34(14):1174-80. PubMed ID: 23744745 [TBL] [Abstract][Full Text] [Related]
14. Two-phase channel structures based on alpha-cyclodextrin-polyethylene glycol inclusion complexes. Topchieva IN; Tonelli AE; Panova IG; Matuchina EV; Kalashnikov FA; Gerasimov VI; Rusa CC; Rusa M; Hunt MA Langmuir; 2004 Oct; 20(21):9036-43. PubMed ID: 15461484 [TBL] [Abstract][Full Text] [Related]
15. Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Cha C; Kim ES; Kim IW; Kong H Biomaterials; 2011 Apr; 32(11):2695-703. PubMed ID: 21262532 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility and membrane strength of C3H10T1/2 cell-loaded alginate-based microcapsules. Zhang WJ; Li BG; Zhang C; Xie XH; Tang TT Cytotherapy; 2008; 10(1):90-7. PubMed ID: 18202978 [TBL] [Abstract][Full Text] [Related]
17. Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates. Davidovich-Pinhas M; Bianco-Peled H Acta Biomater; 2011 Jul; 7(7):2817-25. PubMed ID: 21515425 [TBL] [Abstract][Full Text] [Related]
18. The development of porous alginate/elastin/PEG composite matrix for cardiovascular engineering. Chandy T; Rao GH; Wilson RF; Das GS J Biomater Appl; 2003 Apr; 17(4):287-301. PubMed ID: 12797421 [TBL] [Abstract][Full Text] [Related]
19. A Tri-Stimuli-Responsive Shape-Memory Material Using Host-Guest Interactions as Molecular Switches. Pan M; Yuan QJ; Gong XL; Zhang S; Li BJ Macromol Rapid Commun; 2016 Mar; 37(5):433-8. PubMed ID: 26762250 [TBL] [Abstract][Full Text] [Related]
20. A comparison of alginate and chitosan fibres. Qin Y Med Device Technol; 2004; 15(1):34-7. PubMed ID: 14994638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]