These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 20063125)
1. A tuberculosis model with seasonality. Liu L; Zhao XQ; Zhou Y Bull Math Biol; 2010 May; 72(4):931-52. PubMed ID: 20063125 [TBL] [Abstract][Full Text] [Related]
2. Threshold dynamics for a tuberculosis model with seasonality. Hu X Math Biosci Eng; 2012 Jan; 9(1):111-22. PubMed ID: 22229399 [TBL] [Abstract][Full Text] [Related]
3. Seasonality Impact on the Transmission Dynamics of Tuberculosis. Yang Y; Guo C; Liu L; Zhang T; Liu W Comput Math Methods Med; 2016; 2016():8713924. PubMed ID: 27042199 [TBL] [Abstract][Full Text] [Related]
4. Modeling HIV/AIDS and tuberculosis coinfection. Bhunu CP; Garira W; Mukandavire Z Bull Math Biol; 2009 Oct; 71(7):1745-80. PubMed ID: 19475456 [TBL] [Abstract][Full Text] [Related]
5. An SIS patch model with variable transmission coefficients. Gao D; Ruan S Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886 [TBL] [Abstract][Full Text] [Related]
6. The Ross-Macdonald model in a patchy environment. Auger P; Kouokam E; Sallet G; Tchuente M; Tsanou B Math Biosci; 2008 Dec; 216(2):123-31. PubMed ID: 18805432 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a mathematical model for tuberculosis: What could be done to increase case detection. Okuonghae D; Omosigho SE J Theor Biol; 2011 Jan; 269(1):31-45. PubMed ID: 20937288 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a COVID-19 Epidemic Model with Seasonality. Li Z; Zhang T Bull Math Biol; 2022 Nov; 84(12):146. PubMed ID: 36367626 [TBL] [Abstract][Full Text] [Related]
9. A within-host virus model with periodic multidrug therapy. Wang Z; Zhao XQ Bull Math Biol; 2013 Mar; 75(3):543-63. PubMed ID: 23381930 [TBL] [Abstract][Full Text] [Related]
10. [Estimation of the future epidemiological situation of tuberculosis in Japan]. Ohmori M; Yoshiyama T; Ishikawa N Kekkaku; 2008 Apr; 83(4):365-77. PubMed ID: 18516900 [TBL] [Abstract][Full Text] [Related]
11. Evaluating Strategies For Tuberculosis to Achieve the Goals of WHO in China: A Seasonal Age-Structured Model Study. Xue L; Jing S; Wang H Bull Math Biol; 2022 Apr; 84(6):61. PubMed ID: 35486232 [TBL] [Abstract][Full Text] [Related]
12. Stability and bifurcations in an epidemic model with varying immunity period. Blyuss KB; Kyrychko YN Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905 [TBL] [Abstract][Full Text] [Related]
13. A mathematical treatment of AIDS and condom use. Greenhalgh D; Doyle M; Lewis F IMA J Math Appl Med Biol; 2001 Sep; 18(3):225-62. PubMed ID: 11817744 [TBL] [Abstract][Full Text] [Related]
14. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bacaër N Bull Math Biol; 2007 Apr; 69(3):1067-91. PubMed ID: 17265121 [TBL] [Abstract][Full Text] [Related]
15. Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics. Teboh-Ewungkem MI; Podder CN; Gumel AB Bull Math Biol; 2010 Jan; 72(1):63-93. PubMed ID: 19568725 [TBL] [Abstract][Full Text] [Related]
16. A series of population models for Hyphantria cunea with delay and seasonality. Lu H; Song H; Zhu H Math Biosci; 2017 Oct; 292():57-66. PubMed ID: 28735086 [TBL] [Abstract][Full Text] [Related]
17. The global dynamics of a discrete juvenile-adult model with continuous and seasonal reproduction. Ackleh AS; Chiquet RA J Biol Dyn; 2009 Mar; 3(2-3):101-15. PubMed ID: 22880823 [TBL] [Abstract][Full Text] [Related]
18. Seasonality in various forms of tuberculosis. Nagayama N; Ohmori M Int J Tuberc Lung Dis; 2006 Oct; 10(10):1117-22. PubMed ID: 17044204 [TBL] [Abstract][Full Text] [Related]
19. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Dumont Y; Chiroleu F; Domerg C Math Biosci; 2008 May; 213(1):80-91. PubMed ID: 18394655 [TBL] [Abstract][Full Text] [Related]
20. Seasonal pattern of tuberculosis in Hong Kong. Leung CC; Yew WW; Chan TY; Tam CM; Chan CY; Chan CK; Tang N; Chang KC; Law WS Int J Epidemiol; 2005 Aug; 34(4):924-30. PubMed ID: 15851395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]