BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20063225)

  • 1. Diffusion of homologous model migrants in rubbery polystyrene: molar mass dependence and activation energy of diffusion.
    Pinte J; Joly C; Dole P; Feigenbaum A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Apr; 27(4):557-66. PubMed ID: 20063225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Typical diffusion behaviour in packaging polymers - application to functional barriers.
    Dole P; Feigenbaum AE; De La Cruz C; Pastorelli S; Paseiro P; Hankemeier T; Voulzatis Y; Aucejo S; Saillard P; Papaspyrides C
    Food Addit Contam; 2006 Feb; 23(2):202-11. PubMed ID: 16449064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal of a set of model polymer additives designed for confocal FRAP diffusion experiments.
    Pinte J; Joly C; Plé K; Dole P; Feigenbaum A
    J Agric Food Chem; 2008 Nov; 56(21):10003-11. PubMed ID: 18928296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of migrant size on diffusion in dry and hydrated polyamide 6.
    Hatzigrigoriou NB; Papaspyrides CD; Joly C; Dole P
    J Agric Food Chem; 2010 Aug; 58(15):8667-73. PubMed ID: 20681656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration of styrene monomer, dimers and trimers from polystyrene to food simulants.
    Choi JO; Jitsunari F; Asakawa F; Sun Lee D
    Food Addit Contam; 2005 Jul; 22(7):693-9. PubMed ID: 16019845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of coarse-grained force fields: the polymer case.
    Carbone P; Varzaneh HA; Chen X; Müller-Plathe F
    J Chem Phys; 2008 Feb; 128(6):064904. PubMed ID: 18282071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical experience in the use of mathematical models to predict migration of additives from food-contact polymers.
    O'Brien A; Cooper I
    Food Addit Contam; 2002; 19 Suppl():63-72. PubMed ID: 11962716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional barriers: properties and evaluation.
    Feigenbaum A; Dole P; Aucejo S; Dainelli D; De la Cruz Garcia C; Hankemeier T; N'Gono Y; Papaspyrides CD; Paseiro P; Pastorelli S; Pavlidou S; Pennarun PY; Saillard P; Vidal L; Vitrac O; Voulzatis Y
    Food Addit Contam; 2005 Oct; 22(10):956-67. PubMed ID: 16227179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated approach of migration prediction using numerical modelling associated to experimental determination of key parameters.
    Reynier A; Dole P; Feigenbaum A
    Food Addit Contam; 2002; 19 Suppl():42-55. PubMed ID: 11962714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration of additives from polymers into food simulants: numerical solution of a mathematical model taking into account food and polymer interactions.
    Reynier A; Dole P; Feigenbaum A
    Food Addit Contam; 2002 Jan; 19(1):89-102. PubMed ID: 11811769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of worst case migration: presentation of a rigorous methodology.
    Reynier A; Dole P; Feigenbaum A
    Food Addit Contam; 1999 Apr; 16(4):137-52. PubMed ID: 10560567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration modelling as a tool for quality assurance of food packaging.
    Brandsch J; Mercea P; Rüter M; Tosa V; Piringer O
    Food Addit Contam; 2002; 19 Suppl():29-41. PubMed ID: 11962712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Worst case prediction of additives migration from polystyrene for food safety purposes: a model update.
    Martínez-López B; Gontard N; Peyron S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Mar; 35(3):563-576. PubMed ID: 29111879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer additive migration to foods--a direct comparison of experimental data and values calculated from migration models for polypropylene.
    O'Brien A; Cooper L
    Food Addit Contam; 2001 Apr; 18(4):343-55. PubMed ID: 11339269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting diffusion coefficients of chemicals in and through packaging materials.
    Fang X; Vitrac O
    Crit Rev Food Sci Nutr; 2017 Jan; 57(2):275-312. PubMed ID: 25831407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration and diffusion of diphenylbutadiene from packages into foods.
    Silva AS; Cruz Freire JM; Sendón R; Franz R; Paseiro Losada P
    J Agric Food Chem; 2009 Nov; 57(21):10225-30. PubMed ID: 19839586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple models for assessing migration from food-packaging films.
    Chung D; Papadakis SE; Yam KL
    Food Addit Contam; 2002 Jun; 19(6):611-7. PubMed ID: 12042028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl group dynamics in glassy, polycrystalline, and liquid coenzyme Q10 studied by quasielastic neutron scattering.
    Smuda C; Busch S; Wagner B; Unruh T
    J Chem Phys; 2008 Aug; 129(7):074507. PubMed ID: 19044783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration measurement and modelling from poly(ethylene terephthalate) (PET) into soft drinks and fruit juices in comparison with food simulants.
    Franz R; Welle F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Aug; 25(8):1033-46. PubMed ID: 18608515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.