BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20063901)

  • 1. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress.
    Fedorova M; Todorovsky T; Kuleva N; Hoffmann R
    Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 May; 9(5):2516-26. PubMed ID: 20377239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis.
    Froelich JM; Reid GE
    Proteomics; 2008 Apr; 8(7):1334-45. PubMed ID: 18306178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B.
    Manzanares D; Rodriguez-Capote K; Liu S; Haines T; Ramos Y; Zhao L; Doherty-Kirby A; Lajoie G; Possmayer F
    Biochemistry; 2007 May; 46(18):5604-15. PubMed ID: 17425286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidation produced by hydrogen peroxide on Ca-ATP-G-actin.
    Milzani A; Rossi R; Di Simplicio P; Giustarini D; Colombo R; DalleDonne I
    Protein Sci; 2000 Sep; 9(9):1774-82. PubMed ID: 11045622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging.
    Toda T; Nakamura M; Morisawa H; Hirota M; Nishigaki R; Yoshimi Y
    Geriatr Gerontol Int; 2010 Jul; 10 Suppl 1():S25-31. PubMed ID: 20590839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Hydroxykynurenine oxidizes alpha-crystallin: potential role in cataractogenesis.
    Korlimbinis A; Hains PG; Truscott RJ; Aquilina JA
    Biochemistry; 2006 Feb; 45(6):1852-60. PubMed ID: 16460031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Wiśniewska K; Grzonka Z
    J Inorg Biochem; 2006 Oct; 100(10):1623-31. PubMed ID: 16839607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine oxidation as a major cause of the functional impairment of oxidized actin.
    Dalle-Donne I; Rossi R; Giustarini D; Gagliano N; Di Simplicio P; Colombo R; Milzani A
    Free Radic Biol Med; 2002 May; 32(9):927-37. PubMed ID: 11978495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residues 48 and 82 at the N-terminal hydrophobic pocket of rabbit skeletal muscle troponin-C photo-cross-link to Met121 of troponin-I.
    Luo Y; Leszyk J; Qian Y; Gergely J; Tao T
    Biochemistry; 1999 May; 38(20):6678-88. PubMed ID: 10350487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein.
    DalleDonne I; Milzani A; Colombo R
    Biochemistry; 1999 Sep; 38(38):12471-80. PubMed ID: 10493817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy for identification and detection of multiple oxidative modifications within proteins applied on persulfate-oxidized hemoglobin and human serum albumin.
    Mörtstedt H; Jeppsson MC; Ferrari G; Jönsson BA; Kåredal MH; Lindh CH
    Rapid Commun Mass Spectrom; 2011 Jan; 25(2):327-40. PubMed ID: 21192028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions.
    Elias RJ; McClements DJ; Decker EA
    J Agric Food Chem; 2005 Dec; 53(26):10248-53. PubMed ID: 16366723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization.
    Ji JA; Zhang B; Cheng W; Wang YJ
    J Pharm Sci; 2009 Dec; 98(12):4485-500. PubMed ID: 19455640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Acetylcysteine improves the disturbed thiol redox balance after methionine loading.
    Raijmakers MT; Schilders GW; Roes EM; van Tits LJ; Hak-Lemmers HL; Steegers EA; Peters WH
    Clin Sci (Lond); 2003 Aug; 105(2):173-80. PubMed ID: 12708964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of nitroglycerin-induced cysteine modifications of pro-matrix metalloproteinase-9.
    Krishnatry AS; Kamei T; Wang H; Qu J; Fung HL
    Rapid Commun Mass Spectrom; 2011 Aug; 25(16):2291-8. PubMed ID: 21766372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.