BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20064042)

  • 1. The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.
    Kulas AS; Hortobágyi T; Devita P
    J Athl Train; 2010; 45(1):5-15. PubMed ID: 20064042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
    Blackburn JT; Norcross MF; Cannon LN; Zinder SM
    J Athl Train; 2013; 48(6):764-72. PubMed ID: 24303987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction.
    Vairo GL; Myers JB; Sell TC; Fu FH; Harner CD; Lephart SM
    Knee Surg Sports Traumatol Arthrosc; 2008 Jan; 16(1):2-14. PubMed ID: 17973098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationships among sagittal-plane lower extremity moments: implications for landing strategy in anterior cruciate ligament injury prevention.
    Shimokochi Y; Yong Lee S; Shultz SJ; Schmitz RJ
    J Athl Train; 2009; 44(1):33-8. PubMed ID: 19180216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction.
    Thomas AC; Villwock M; Wojtys EM; Palmieri-Smith RM
    J Athl Train; 2013; 48(5):610-20. PubMed ID: 24067150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):748-56. PubMed ID: 23944382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
    Blackburn JT; Padua DA
    J Athl Train; 2009; 44(2):174-9. PubMed ID: 19295962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
    Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ
    Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower extremity muscle activation and knee flexion during a jump-landing task.
    Walsh M; Boling MC; McGrath M; Blackburn JT; Padua DA
    J Athl Train; 2012; 47(4):406-13. PubMed ID: 22889656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.
    Harding GT; Dunbar MJ; Hubley-Kozey CL; Stanish WD; Astephen Wilson JL
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():79-86. PubMed ID: 26476602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.
    Norcross MF; Lewek MD; Padua DA; Shultz SJ; Weinhold PS; Blackburn JT
    J Athl Train; 2013; 48(6):757-63. PubMed ID: 23944381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing.
    Maniar N; Schache AG; Pizzolato C; Opar DA
    Scand J Med Sci Sports; 2020 Sep; 30(9):1664-1674. PubMed ID: 32416625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat.
    Kulas AS; Hortobágyi T; DeVita P
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):16-21. PubMed ID: 21839557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings.
    Kulas A; Zalewski P; Hortobagyi T; DeVita P
    J Biomech; 2008; 41(1):180-5. PubMed ID: 17678932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between frontal plane trunk control during landing and lower extremity muscle strength in young athletes after anterior cruciate ligament reconstruction.
    Fryer C; Ithurburn MP; McNally MP; Thomas S; Paterno MV; Schmitt LC
    Clin Biomech (Bristol, Avon); 2019 Feb; 62():58-65. PubMed ID: 30690410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Falling decreased anterior cruciate ligament loading variables during single-leg landings after mid-flight external trunk perturbation.
    Song Y; Li L; Layer J; Hughes G; Smith D; Wilson M; Zhu Q; Dai B
    J Electromyogr Kinesiol; 2024 Feb; 74():102849. PubMed ID: 38061150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.