These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 20064075)

  • 41. Strategies for the construction of insect P450 fusion enzymes.
    Talmann L; Wiesner J; Vilcinskas A
    Z Naturforsch C J Biosci; 2017 Sep; 72(9-10):405-415. PubMed ID: 28866653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytochromes P450 as useful biocatalysts: addressing the limitations.
    O'Reilly E; Köhler V; Flitsch SL; Turner NJ
    Chem Commun (Camb); 2011 Mar; 47(9):2490-501. PubMed ID: 21264369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directed evolution of P450cin for mediated electron transfer.
    Belsare KD; Horn T; Ruff AJ; Martinez R; Magnusson A; Holtmann D; Schrader J; Schwaneberg U
    Protein Eng Des Sel; 2017 Feb; 30(2):119-127. PubMed ID: 28007937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
    Zuo R; Zhang Y; Huguet-Tapia JC; Mehta M; Dedic E; Bruner SD; Loria R; Ding Y
    Biotechnol J; 2016 May; 11(5):624-32. PubMed ID: 26743860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7.
    Guo C; Wu ZL
    Enzyme Microb Technol; 2017 Nov; 106():28-34. PubMed ID: 28859807
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Guidelines for development and implementation of biocatalytic P450 processes.
    Lundemo MT; Woodley JM
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2465-83. PubMed ID: 25652652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors.
    Schneider E; Clark DS
    Biosens Bioelectron; 2013 Jan; 39(1):1-13. PubMed ID: 22809523
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology.
    Agostini F; Völler JS; Koksch B; Acevedo-Rocha CG; Kubyshkin V; Budisa N
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9680-9703. PubMed ID: 28085996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coexpression of genetically engineered fused enzyme between yeast NADPH-P450 reductase and human cytochrome P450 3A4 and human cytochrome b5 in yeast.
    Hayashi K; Sakaki T; Kominami S; Inouye K; Yabusaki Y
    Arch Biochem Biophys; 2000 Sep; 381(1):164-70. PubMed ID: 11019832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Co-immobilized coupled enzyme systems in biotechnology.
    Betancor L; Luckarift H
    Biotechnol Genet Eng Rev; 2010; 27():95-114. PubMed ID: 21415894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Progress towards the easier use of P450 enzymes.
    Chefson A; Auclair K
    Mol Biosyst; 2006 Oct; 2(10):462-9. PubMed ID: 17216026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Riboflavin Is Directly Involved in N-Dealkylation Catalyzed by Bacterial Cytochrome P450 Monooxygenases.
    Zhang C; Lu M; Lin L; Huang Z; Zhang R; Wu X; Chen Y
    Chembiochem; 2020 Aug; 21(16):2297-2305. PubMed ID: 32243060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in biocatalyst discovery, development and applications.
    Yang G; Ding Y
    Bioorg Med Chem; 2014 Oct; 22(20):5604-12. PubMed ID: 25042559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recombinant cytochrome p450 immobilization for biosensor applications.
    Paternolli C; Antonini M; Ghisellini P; Nicolini C
    Langmuir; 2004 Dec; 20(26):11706-12. PubMed ID: 15595801
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b(5) enzymes.
    Shimada T; Mernaugh RL; Guengerich FP
    Arch Biochem Biophys; 2005 Mar; 435(1):207-16. PubMed ID: 15680923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expanding P450 catalytic reaction space through evolution and engineering.
    McIntosh JA; Farwell CC; Arnold FH
    Curr Opin Chem Biol; 2014 Apr; 19():126-34. PubMed ID: 24658056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity.
    Di Nardo G; Gilardi G
    Trends Biochem Sci; 2020 Jun; 45(6):511-525. PubMed ID: 32413326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Keeping the spotlight on cytochrome P450.
    Shalan H; Kato M; Cheruzel L
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):80-87. PubMed ID: 28599858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s.
    Meng S; Ji Y; Zhu L; Dhoke GV; Davari MD; Schwaneberg U
    Biotechnol Adv; 2022 Dec; 61():108051. PubMed ID: 36270499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.