These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 20064432)
1. Aza-tryptamine substrates in monoterpene indole alkaloid biosynthesis. Lee HY; Yerkes N; O'Connor SE Chem Biol; 2009 Dec; 16(12):1225-9. PubMed ID: 20064432 [TBL] [Abstract][Full Text] [Related]
2. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Runguphan W; Maresh JJ; O'Connor SE Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13673-8. PubMed ID: 19666570 [TBL] [Abstract][Full Text] [Related]
3. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus. O'Connor SE Methods Enzymol; 2012; 515():189-206. PubMed ID: 22999175 [TBL] [Abstract][Full Text] [Related]
4. Discovery of a Short-Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid. Stavrinides AK; Tatsis EC; Dang TT; Caputi L; Stevenson CEM; Lawson DM; Schneider B; O'Connor SE Chembiochem; 2018 May; 19(9):940-948. PubMed ID: 29424954 [TBL] [Abstract][Full Text] [Related]
5. Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. McCoy E; O'Connor SE J Am Chem Soc; 2006 Nov; 128(44):14276-7. PubMed ID: 17076499 [TBL] [Abstract][Full Text] [Related]
6. Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Bernhardt P; McCoy E; O'Connor SE Chem Biol; 2007 Aug; 14(8):888-97. PubMed ID: 17719488 [TBL] [Abstract][Full Text] [Related]
7. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Fernández-Pérez F; Almagro L; Pedreño MA; Gómez Ros LV Pharm Biol; 2013 Mar; 51(3):304-10. PubMed ID: 23137274 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Geerlings A; Redondo FJ; Contin A; Memelink J; van der Heijden R; Verpoorte R Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):420-4. PubMed ID: 11549013 [TBL] [Abstract][Full Text] [Related]
9. Gene Discovery in Gelsemium Highlights Conserved Gene Clusters in Monoterpene Indole Alkaloid Biosynthesis. Franke J; Kim J; Hamilton JP; Zhao D; Pham GM; Wiegert-Rininger K; Crisovan E; Newton L; Vaillancourt B; Tatsis E; Buell CR; O'Connor SE Chembiochem; 2019 Jan; 20(1):83-87. PubMed ID: 30300974 [TBL] [Abstract][Full Text] [Related]
10. Integrating carbon-halogen bond formation into medicinal plant metabolism. Runguphan W; Qu X; O'Connor SE Nature; 2010 Nov; 468(7322):461-4. PubMed ID: 21048708 [TBL] [Abstract][Full Text] [Related]
11. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Rai A; Smita SS; Singh AK; Shanker K; Nagegowda DA Mol Plant; 2013 Sep; 6(5):1531-49. PubMed ID: 23543438 [TBL] [Abstract][Full Text] [Related]
12. Combination of Machine Learning and Empirical Computation for the Structural Validation of Trirosaline, a Natural Trimeric Monoterpene Indole Alkaloid from Szwarc S; Jagora A; Derbré S; Leblanc K; Rharrabti S; Said-Hassane C; El Kalamouni C; Gallard JF; Le Pogam P; Beniddir MA Org Lett; 2024 Jan; 26(1):274-279. PubMed ID: 38134219 [TBL] [Abstract][Full Text] [Related]
13. A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus. Kumar SR; Rai A; Bomzan DP; Kumar K; Hemmerlin A; Dwivedi V; Godbole RC; Barvkar V; Shanker K; Shilpashree HB; Bhattacharya A; Smitha AR; Hegde N; Nagegowda DA Plant J; 2020 Jul; 103(1):248-265. PubMed ID: 32064705 [TBL] [Abstract][Full Text] [Related]
14. Diversification of monoterpene indole alkaloid analogs through cross-coupling. Runguphan W; O'Connor SE Org Lett; 2013 Jun; 15(11):2850-3. PubMed ID: 23713451 [TBL] [Abstract][Full Text] [Related]
15. The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. Williams D; Qu Y; Simionescu R; De Luca V Plant J; 2019 Aug; 99(4):626-636. PubMed ID: 31009114 [TBL] [Abstract][Full Text] [Related]
16. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"? Guirimand G; Courdavault V; Lanoue A; Mahroug S; Guihur A; Blanc N; Giglioli-Guivarc'h N; St-Pierre B; Burlat V BMC Plant Biol; 2010 Aug; 10():182. PubMed ID: 20723215 [TBL] [Abstract][Full Text] [Related]
17. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Kidd T; Easson ML; Qu Y; De Luca V Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871 [TBL] [Abstract][Full Text] [Related]
18. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. Glenn WS; Nims E; O'Connor SE J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348 [TBL] [Abstract][Full Text] [Related]