These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 20064793)
1. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Samberg ME; Oldenburg SJ; Monteiro-Riviere NA Environ Health Perspect; 2010 Mar; 118(3):407-13. PubMed ID: 20064793 [TBL] [Abstract][Full Text] [Related]
2. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition. Holmes AM; Lim J; Studier H; Roberts MS Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544 [TBL] [Abstract][Full Text] [Related]
4. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Zhang LW; Yu WW; Colvin VL; Monteiro-Riviere NA Toxicol Appl Pharmacol; 2008 Apr; 228(2):200-11. PubMed ID: 18261754 [TBL] [Abstract][Full Text] [Related]
5. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Georgantzopoulou A; Serchi T; Cambier S; Leclercq CC; Renaut J; Shao J; Kruszewski M; Lentzen E; Grysan P; Eswara S; Audinot JN; Contal S; Ziebel J; Guignard C; Hoffmann L; Murk AJ; Gutleb AC Part Fibre Toxicol; 2016 Feb; 13():9. PubMed ID: 26888332 [TBL] [Abstract][Full Text] [Related]
6. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Galandáková A; Franková J; Ambrožová N; Habartová K; Pivodová V; Zálešák B; Šafářová K; Smékalová M; Ulrichová J Hum Exp Toxicol; 2016 Sep; 35(9):946-57. PubMed ID: 26500221 [TBL] [Abstract][Full Text] [Related]
7. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Zanette C; Pelin M; Crosera M; Adami G; Bovenzi M; Larese FF; Florio C Toxicol In Vitro; 2011 Aug; 25(5):1053-60. PubMed ID: 21501681 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Miyani VA; Hughes MF Cutan Ocul Toxicol; 2017 Jun; 36(2):145-151. PubMed ID: 27439971 [TBL] [Abstract][Full Text] [Related]
10. Effects of silver nanoparticles on the liver and hepatocytes in vitro. Gaiser BK; Hirn S; Kermanizadeh A; Kanase N; Fytianos K; Wenk A; Haberl N; Brunelli A; Kreyling WG; Stone V Toxicol Sci; 2013 Feb; 131(2):537-47. PubMed ID: 23086748 [TBL] [Abstract][Full Text] [Related]
11. Toxicity assessment of six titanium dioxide nanoparticles in human epidermal keratinocytes. Zhang LW; Monteiro-Riviere NA Cutan Ocul Toxicol; 2019 Mar; 38(1):66-80. PubMed ID: 30265130 [TBL] [Abstract][Full Text] [Related]
12. Skin Toxicity Assessment of Silver Nanoparticles in a 3D Epidermal Model Compared to 2D Keratinocytes. Chen L; Wu M; Jiang S; Zhang Y; Li R; Lu Y; Liu L; Wu G; Liu Y; Xie L; Xu L Int J Nanomedicine; 2019; 14():9707-9719. PubMed ID: 31849463 [TBL] [Abstract][Full Text] [Related]
13. Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Trickler WJ; Lantz-McPeak SM; Robinson BL; Paule MG; Slikker W; Biris AS; Schlager JJ; Hussain SM; Kanungo J; Gonzalez C; Ali SF Drug Metab Rev; 2014 May; 46(2):224-31. PubMed ID: 24378227 [TBL] [Abstract][Full Text] [Related]
14. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. Das B; Tripathy S; Adhikary J; Chattopadhyay S; Mandal D; Dash SK; Das S; Dey A; Dey SK; Das D; Roy S J Biol Inorg Chem; 2017 Aug; 22(6):893-918. PubMed ID: 28643149 [TBL] [Abstract][Full Text] [Related]
15. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617 [TBL] [Abstract][Full Text] [Related]
16. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
17. Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Herzog F; Clift MJ; Piccapietra F; Behra R; Schmid O; Petri-Fink A; Rothen-Rutishauser B Part Fibre Toxicol; 2013 Apr; 10():11. PubMed ID: 23557437 [TBL] [Abstract][Full Text] [Related]
18. Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Murray AR; Kisin E; Inman A; Young SH; Muhammed M; Burks T; Uheida A; Tkach A; Waltz M; Castranova V; Fadeel B; Kagan VE; Riviere JE; Monteiro-Riviere N; Shvedova AA Cell Biochem Biophys; 2013 Nov; 67(2):461-76. PubMed ID: 22669739 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Samberg ME; Loboa EG; Oldenburg SJ; Monteiro-Riviere NA Nanomedicine (Lond); 2012 Aug; 7(8):1197-209. PubMed ID: 22583572 [TBL] [Abstract][Full Text] [Related]
20. Aerosolized Silver Nanoparticles in the Rat Lung and Pulmonary Responses over Time. Silva RM; Anderson DS; Peake J; Edwards PC; Patchin ES; Guo T; Gordon T; Chen LC; Sun X; Van Winkle LS; Pinkerton KE Toxicol Pathol; 2016 Jul; 44(5):673-86. PubMed ID: 27025955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]