BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20065516)

  • 1. Dissociation of nystatin and amphotericin analogues: characterisation of minor anti-fungal macrolides.
    Ulrych A; Derrick PJ; Adamek F; Novák P; Lemr K; Havlicek V
    Eur J Mass Spectrom (Chichester); 2010; 16(1):73-80. PubMed ID: 20065516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of amphotericin B and nystatin in antifungal mouthrinses containing sodium hydrogen carbonate.
    Groeschke J; Solassol I; Bressolle F; Pinguet F
    J Pharm Biomed Anal; 2006 Sep; 42(3):362-6. PubMed ID: 16740372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified approach to polyene macrolides: synthesis of candidin and nystatin polyols.
    Kadota I; Hu Y; Packard GK; Rychnovsky SD
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):11992-5. PubMed ID: 15192147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YS-822A, a new polyene macrolide antibiotic. II. Planar structure of YS-822A.
    Hirota H; Itoh A; Ido J; Iwamoto Y; Goshima E; Miki T; Hasuda K; Ohashi Y
    J Antibiot (Tokyo); 1991 Feb; 44(2):181-6. PubMed ID: 2010357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine.
    Paquet V; Carreira EM
    Org Lett; 2006 Apr; 8(9):1807-9. PubMed ID: 16623556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the structure-function relationship of polyene macrolides: engineered biosynthesis of soluble nystatin analogues.
    Borgos SE; Tsan P; Sletta H; Ellingsen TE; Lancelin JM; Zotchev SB
    J Med Chem; 2006 Apr; 49(8):2431-9. PubMed ID: 16610786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Photostability of antifungal agents. 2. Photostability of polyene antibiotics].
    Thoma K; Kübler N
    Pharmazie; 1997 Apr; 52(4):294-302. PubMed ID: 9190607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New nystatin-related antifungal polyene macrolides with altered polyol region generated via biosynthetic engineering of Streptomyces noursei.
    Brautaset T; Sletta H; Degnes KF; Sekurova ON; Bakke I; Volokhan O; Andreassen T; Ellingsen TE; Zotchev SB
    Appl Environ Microbiol; 2011 Sep; 77(18):6636-43. PubMed ID: 21764946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered biosynthesis and characterisation of disaccharide-modified 8-deoxyamphoteronolides.
    Walmsley S; De Poire E; Rawlings B; Caffrey P
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1899-1905. PubMed ID: 27858138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis of a new antifungal polymerisable monomer and its characterisation by coordination-ion spray mass spectrometry.
    Zerbib C; Amigoni S; Taffin de Givenchy E; Massi L; Precheur I; Guittard F
    Rapid Commun Mass Spectrom; 2011 Aug; 25(15):2141-8. PubMed ID: 21710593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of nystatin and amphotericin biosynthesis.
    Zotchev S; Caffrey P
    Methods Enzymol; 2009; 459():243-58. PubMed ID: 19362643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, physico-chemical and biological properties of some alkali metals and quaternary alkylammonium salts of polyene antibiotics: amphotericin B, nystatin and aureofungin.
    Chatterjee NR; Badave VM; Pawar DA
    Hindustan Antibiot Bull; 1994; 36(1-2):34-8. PubMed ID: 7737895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: a combined tandem mass spectrometry and quantum chemical study.
    Jegorov A; Paizs B; Zabka M; Kuzma M; Havlícek V; Giannakopulos AE; Derrick PJ
    Eur J Mass Spectrom (Chichester); 2003; 9(2):105-16. PubMed ID: 12748394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-based antifungal agents: a concise overview.
    Arikan S
    Cell Mol Biol Lett; 2002; 7(3):919-22. PubMed ID: 12378276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive fluorinated derivative of amphotericin B.
    Matsumori N; Umegawa Y; Oishi T; Murata M
    Bioorg Med Chem Lett; 2005 Aug; 15(15):3565-7. PubMed ID: 15963721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular transformation of an antifungal antibiotic nystatin A
    Szwarc K; Płosiński M; Czerniejewska K; Laskowski T; Leniak A; Czub J; Kubica P; Sowiński P; Pawlak J; Borowski E
    Magn Reson Chem; 2016 Dec; 54(12):953-961. PubMed ID: 27379602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B.
    Hapala I; Klobucníková V; Mazánová K; Kohút P
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1206-9. PubMed ID: 16246082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New features on the fragmentation patterns of homoisoflavonoids in Ophiopogon japonicus by high-performance liquid chromatography/diode-array detection/electrospray ionization with multi-stage tandem mass spectrometry.
    Qi J; Xu D; Zhou YF; Qin MJ; Yu BY
    Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2193-206. PubMed ID: 20583326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced degradation and impurity profiling: recent trends in analytical perspectives.
    Jain D; Basniwal PK
    J Pharm Biomed Anal; 2013 Dec; 86():11-35. PubMed ID: 23969330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [New liposomal forms of antifungal antibiotics, modified by amphiphilic polymers].
    Iamskov IA; Kuskov AN; Babievskiĭ KK; Berezin BB; Kraiukhina MA; Samoĭlova NA; Tikhonov VE; Shtil'man MI
    Prikl Biokhim Mikrobiol; 2008; 44(6):688-93. PubMed ID: 19145977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.