BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20066029)

  • 21. Consequences of chronic bacterial infection in Drosophila melanogaster.
    Chambers MC; Jacobson E; Khalil S; Lazzaro BP
    PLoS One; 2019; 14(10):e0224440. PubMed ID: 31648237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Chronic Infection on Resistance and Tolerance to Secondary Infection in Drosophila melanogaster.
    Wukitch AM; Lawrence MM; Satriale FP; Patel A; Ginder GM; Van Beek EJ; Gilani O; Chambers MC
    Infect Immun; 2023 Mar; 91(3):e0036022. PubMed ID: 36794959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway.
    Iatsenko I; Kondo S; Mengin-Lecreulx D; Lemaitre B
    Immunity; 2016 Nov; 45(5):1013-1023. PubMed ID: 27851910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The peptidoglycan recognition protein PGRP-LE regulates the Drosophila immune response against the pathogen Photorhabdus.
    Chevée V; Sachar U; Yadav S; Heryanto C; Eleftherianos I
    Microb Pathog; 2019 Nov; 136():103664. PubMed ID: 31404632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence.
    Bou Sleiman MS; Osman D; Massouras A; Hoffmann AA; Lemaitre B; Deplancke B
    Nat Commun; 2015 Jul; 6():7829. PubMed ID: 26213329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria.
    Bischoff V; Vignal C; Boneca IG; Michel T; Hoffmann JA; Royet J
    Nat Immunol; 2004 Nov; 5(11):1175-80. PubMed ID: 15448690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alternative measures of response to Pseudomonas aeruginosa infection in Drosophila melanogaster.
    Corby-Harris V; Habel KE; Ali FG; Promislow DE
    J Evol Biol; 2007 Mar; 20(2):526-33. PubMed ID: 17305818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An effector Peptide family required for Drosophila toll-mediated immunity.
    Clemmons AW; Lindsay SA; Wasserman SA
    PLoS Pathog; 2015 Apr; 11(4):e1004876. PubMed ID: 25915418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods for the study of innate immunity in Drosophila melanogaster.
    Troha K; Buchon N
    Wiley Interdiscip Rev Dev Biol; 2019 Sep; 8(5):e344. PubMed ID: 30993906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli.
    Rämet M; Manfruelli P; Pearson A; Mathey-Prevot B; Ezekowitz RA
    Nature; 2002 Apr; 416(6881):644-8. PubMed ID: 11912489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus.
    Shokal U; Kopydlowski H; Eleftherianos I
    Virulence; 2017 Nov; 8(8):1668-1682. PubMed ID: 28498729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)-family members in Drosophila.
    Kurata S
    Dev Comp Immunol; 2004 Feb; 28(2):89-95. PubMed ID: 12969795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.
    Khalil S; Jacobson E; Chambers MC; Lazzaro BP
    J Vis Exp; 2015 May; (99):e52613. PubMed ID: 25992475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolutionary costs of immunological maintenance and deployment.
    McKean KA; Yourth CP; Lazzaro BP; Clark AG
    BMC Evol Biol; 2008 Mar; 8():76. PubMed ID: 18315877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.
    Unckless RL; Rottschaefer SM; Lazzaro BP
    PLoS Genet; 2015 Mar; 11(3):e1005030. PubMed ID: 25764027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Naturally occurring genetic variation in the age-specific immune response of Drosophila melanogaster.
    Lesser KJ; Paiusi IC; Leips J
    Aging Cell; 2006 Aug; 5(4):293-5. PubMed ID: 16803580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance.
    Kutzer MAM; Kurtz J; Armitage SAO
    J Anim Ecol; 2019 Apr; 88(4):566-578. PubMed ID: 30697699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unraveling the protective effect of a Drosophila phosphatidylethanolamine-binding protein upon bacterial infection by means of proteomics.
    Reumer A; Bogaerts A; Van Loy T; Husson SJ; Temmerman L; Choi C; Clynen E; Hassan B; Schoofs L
    Dev Comp Immunol; 2009 Nov; 33(11):1186-95. PubMed ID: 19545586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression on the fly: A transcriptome-level view of Drosophila's immune response to the opportunistic fungal pathogen Aspergillus flavus.
    Ramírez-Camejo LA; Bayman P
    Infect Genet Evol; 2020 Aug; 82():104308. PubMed ID: 32240802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid recruitment of innate immunity regulates variation of intracellular pathogen resistance in Drosophila.
    Okado K; Shinzawa N; Aonuma H; Nelson B; Fukumoto S; Fujisaki K; Kawazu S; Kanuka H
    Biochem Biophys Res Commun; 2009 Jan; 379(1):6-10. PubMed ID: 19061858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.