These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20066185)

  • 1. Narrow band gap and enhanced thermoelectricity in FeSb2.
    Sun P; Oeschler N; Johnsen S; Iversen BB; Steglich F
    Dalton Trans; 2010 Jan; 39(4):1012-9. PubMed ID: 20066185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and electrical properties of cryogenic thermoelectric FeSb
    Gujjar D; Gujjar S; Malik VK; Kandpal HC
    J Phys Condens Matter; 2023 Dec; 36(11):. PubMed ID: 38052096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal destruction of spin-polaron bands in the narrow-gap correlated semiconductors FeGa3 and FeSb2.
    Storchak VG; Brewer JH; Lichti RL; Hu R; Petrovic C
    J Phys Condens Matter; 2012 May; 24(18):185601. PubMed ID: 22481069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large enhancement of the thermopower in Na(x)CoO2 at high Na doping.
    Lee M; Viciu L; Li L; Wang Y; Foo ML; Watauchi S; Pascal RA; Cava RJ; Ong NP
    Nat Mater; 2006 Jul; 5(7):537-40. PubMed ID: 16767094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin entropy as the likely source of enhanced thermopower in Na(x)Co2O4.
    Wang Y; Rogado NS; Cava RJ; Ong NP
    Nature; 2003 May; 423(6938):425-8. PubMed ID: 12761545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Figure-of-merit enhancement in nanostructured FeSb(2-x)Ag(x) with Ag(1-y)Sb(y) nanoinclusions.
    Zhao H; Pokharel M; Chen S; Liao B; Lukas K; Opeil C; Chen G; Ren Z
    Nanotechnology; 2012 Dec; 23(50):505402. PubMed ID: 23196384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new thermoelectric material: CsBi4Te6.
    Chung DY; Hogan TP; Rocci-Lane M; Brazis P; Ireland JR; Kannewurf CR; Bastea M; Uher C; Kanatzidis MG
    J Am Chem Soc; 2004 May; 126(20):6414-28. PubMed ID: 15149239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of Zn resonance levels and thermoelectric properties in I-doped PbTe with ZnTe nanostructures.
    Rawat PK; Paul B; Banerji P
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3995-4004. PubMed ID: 24575978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys.
    Makongo JP; Misra DK; Zhou X; Pant A; Shabetai MR; Su X; Uher C; Stokes KL; Poudeu PF
    J Am Chem Soc; 2011 Nov; 133(46):18843-52. PubMed ID: 21970624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.1square0.4.
    Nguyen LT; Aydemir U; Baitinger M; Bauer E; Borrmann H; Burkhardt U; Custers J; Haghighirad A; Höfler R; Luther KD; Ritter F; Assmus W; Grin Y; Paschen S
    Dalton Trans; 2010 Jan; 39(4):1071-7. PubMed ID: 20066193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature thermoelectric properties of Mo3Sb(7-x)Te(x) (0.0≤x≤1.8).
    Candolfi C; Lenoir B; Chubilleau C; Dauscher A; Guilmeau E
    J Phys Condens Matter; 2010 Jan; 22(2):025801. PubMed ID: 21386262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and thermoelectric properties of sintered type-I clathrates K8Ga(x)Sn(46-x).
    Hayashi M; Kishimoto K; Kishio K; Akai K; Asada H; Koyanagi T
    Dalton Trans; 2010 Jan; 39(4):1113-7. PubMed ID: 20066199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-poor antimonides: complex framework structures with narrow band gaps and low thermal conductivity.
    Häussermann U; Mikhaylushkin AS
    Dalton Trans; 2010 Jan; 39(4):1036-45. PubMed ID: 20066189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CaMn(1-x)Nb(x)O3 (x < or = 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials.
    Bocher L; Aguirre MH; Logvinovich D; Shkabko A; Robert R; Trottmann M; Weidenkaff A
    Inorg Chem; 2008 Sep; 47(18):8077-85. PubMed ID: 18698764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impurity-band induced transport phenomenon and thermoelectric properties in Yb doped PbTe(1-x)I(x).
    Rawat PK; Paul B; Banerji P
    Phys Chem Chem Phys; 2013 Oct; 15(39):16686-92. PubMed ID: 23985964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconductivity at 43 K in an iron-based layered compound LaO(1-x)F(x)FeAs.
    Takahashi H; Igawa K; Arii K; Kamihara Y; Hirano M; Hosono H
    Nature; 2008 May; 453(7193):376-8. PubMed ID: 18432191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties of Zn-doped Ca5In2Sb6.
    Zevalkink A; Swallow J; Snyder GJ
    Dalton Trans; 2013 Jul; 42(26):9713-9. PubMed ID: 23680848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition, structure, bonding and thermoelectric properties of "CuT2P3" and "CuT4P3", members of the T(1-x)(CuP3)x series with T being Si and Ge.
    Wang P; Ahmadpour F; Kolodiazhnyi T; Kracher A; Cranswick LM; Mozharivskyj Y
    Dalton Trans; 2010 Jan; 39(4):1105-12. PubMed ID: 20066198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study.
    Cargnoni F; Nishibori E; Rabiller P; Bertini L; Snyder GJ; Christensen M; Gatti C; Iversen BB
    Chemistry; 2004 Aug; 10(16):3861-70. PubMed ID: 15317052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.