These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells. Neale SL; Ohta AT; Hsu HY; Valley JK; Jamshidi A; Wu MC Opt Express; 2009 Mar; 17(7):5232-9. PubMed ID: 19333286 [TBL] [Abstract][Full Text] [Related]
3. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media. Yang Y; Mao Y; Shin KS; Chui CO; Chiou PY Sci Rep; 2016 Mar; 6():22630. PubMed ID: 26940301 [TBL] [Abstract][Full Text] [Related]
4. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Jeorrett AH; Neale SL; Massoubre D; Gu E; Henderson RK; Millington O; Mathieson K; Dawson MD Opt Express; 2014 Jan; 22(2):1372-80. PubMed ID: 24515144 [TBL] [Abstract][Full Text] [Related]
5. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Yang SM; Yu TM; Huang HP; Ku MY; Hsu L; Liu CH Opt Lett; 2010 Jun; 35(12):1959-61. PubMed ID: 20548352 [TBL] [Abstract][Full Text] [Related]
6. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509 [TBL] [Abstract][Full Text] [Related]
7. Spatially selecting a single cell for lysis using light-induced electric fields. Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234 [TBL] [Abstract][Full Text] [Related]
8. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells. Zhang S; Shakiba N; Chen Y; Zhang Y; Tian P; Singh J; Chamberlain MD; Satkauskas M; Flood AG; Kherani NP; Yu S; Zandstra PW; Wheeler AR Small; 2018 Nov; 14(45):e1803342. PubMed ID: 30307718 [TBL] [Abstract][Full Text] [Related]
10. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers. Liang S; Gan C; Dai Y; Zhang C; Bai X; Zhang S; Wheeler AR; Chen H; Feng L Lab Chip; 2021 Nov; 21(22):4379-4389. PubMed ID: 34596652 [TBL] [Abstract][Full Text] [Related]
11. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays. Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093 [TBL] [Abstract][Full Text] [Related]
12. The potential of dielectrophoresis for single-cell experiments. Müller T; Pfennig A; Klein P; Gradl G; Jäger M; Schnelle T IEEE Eng Med Biol Mag; 2003; 22(6):51-61. PubMed ID: 15007991 [No Abstract] [Full Text] [Related]
13. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval. Gan C; Zhang J; Chen B; Wang A; Xiong H; Zhao J; Wang C; Liang S; Feng L Small; 2024 Jun; 20(23):e2307329. PubMed ID: 38509856 [TBL] [Abstract][Full Text] [Related]
14. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Arai F; Ng C; Maruyama H; Ichikawa A; El-Shimy H; Fukuda T Lab Chip; 2005 Dec; 5(12):1399-403. PubMed ID: 16286972 [TBL] [Abstract][Full Text] [Related]
15. The optoelectronic microrobot: A versatile toolbox for micromanipulation. Zhang S; Scott EY; Singh J; Chen Y; Zhang Y; Elsayed M; Chamberlain MD; Shakiba N; Adams K; Yu S; Morshead CM; Zandstra PW; Wheeler AR Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14823-14828. PubMed ID: 31289234 [TBL] [Abstract][Full Text] [Related]
16. Massively parallel manipulation of single cells and microparticles using optical images. Chiou PY; Ohta AT; Wu MC Nature; 2005 Jul; 436(7049):370-2. PubMed ID: 16034413 [TBL] [Abstract][Full Text] [Related]
17. Microtechnologies and nanotechnologies for single-cell analysis. Andersson H; van den Berg A Curr Opin Biotechnol; 2004 Feb; 15(1):44-9. PubMed ID: 15102465 [TBL] [Abstract][Full Text] [Related]
18. Integration of plasmonic trapping in a microfluidic environment. Huang L; Maerkl SJ; Martin OJ Opt Express; 2009 Apr; 17(8):6018-24. PubMed ID: 19365421 [TBL] [Abstract][Full Text] [Related]