These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20066252)

  • 1. Spatially resolved shear distribution in microfluidic chip for studying force transduction mechanisms in cells.
    Wang J; Heo J; Hua SZ
    Lab Chip; 2010 Jan; 10(2):235-9. PubMed ID: 20066252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation.
    Moraes C; Chen JH; Sun Y; Simmons CA
    Lab Chip; 2010 Jan; 10(2):227-34. PubMed ID: 20066251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An apparatus for studying the response of cultured endothelial cells to stresses.
    Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time observation of flow-induced cytoskeletal stress in living cells.
    Rahimzadeh J; Meng F; Sachs F; Wang J; Verma D; Hua SZ
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C646-52. PubMed ID: 21653900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the effects of fluid shear forces on cellular responses to profiled surfaces in-vitro: a computational and experimental investigation.
    Brown A; Meenan BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5387-90. PubMed ID: 18003226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic osmotic loading of chondrocytes using a novel microfluidic device.
    Chao PG; Tang Z; Angelini E; West AC; Costa KD; Hung CT
    J Biomech; 2005 Jun; 38(6):1273-81. PubMed ID: 15863112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. See-saw rocking: an in vitro model for mechanotransduction research.
    Tucker RP; Henningsson P; Franklin SL; Chen D; Ventikos Y; Bomphrey RJ; Thompson MS
    J R Soc Interface; 2014 Aug; 11(97):20140330. PubMed ID: 24898022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture.
    Maul TM; Hamilton DW; Nieponice A; Soletti L; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):110-6. PubMed ID: 17227105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quartz crystal microbalance-based measurements of shear-induced senescence in human embryonic kidney cells.
    Jenkins MS; Wong KC; Chhit O; Bertram JF; Young RJ; Subaschandar N
    Biotechnol Bioeng; 2004 Nov; 88(3):392-8. PubMed ID: 15486945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces.
    Liu L; Loutherback K; Liao D; Yeater D; Lambert G; Estévez-Torres A; Sturm JC; Getzenberg RH; Austin RH
    Lab Chip; 2010 Jul; 10(14):1807-13. PubMed ID: 20424729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ; Nam JH; Lee YJ; Shin S
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates.
    Sarvepalli DP; Schmidtke DW; Nollert MU
    Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of physiological shear stress to renal tubular epithelial cells.
    Ferrell N; Sandoval RM; Molitoris BA; Brakeman P; Roy S; Fissell WH
    Methods Cell Biol; 2019; 153():43-67. PubMed ID: 31395384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated grooved substrates as platforms for bioartificial liver reactors.
    Park J; Berthiaume F; Toner M; Yarmush ML; Tilles AW
    Biotechnol Bioeng; 2005 Jun; 90(5):632-44. PubMed ID: 15834948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.