BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20066384)

  • 1. The role of van der Waals interactions in surface-supported supramolecular networks.
    Nguyen MT; Pignedoli CA; Treier M; Fasel R; Passerone D
    Phys Chem Chem Phys; 2010 Jan; 12(4):992-9. PubMed ID: 20066384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface.
    Mura M; Gulans A; Thonhauser T; Kantorovich L
    Phys Chem Chem Phys; 2010 May; 12(18):4759-67. PubMed ID: 20428556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density, structure, and dynamics of water: the effect of van der Waals interactions.
    Wang J; Román-Pérez G; Soler JM; Artacho E; Fernández-Serra MV
    J Chem Phys; 2011 Jan; 134(2):024516. PubMed ID: 21241129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures.
    Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y
    J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of van der Waals interactions in liquid water.
    Lin IC; Seitsonen AP; Coutinho-Neto MD; Tavernelli I; Rothlisberger U
    J Phys Chem B; 2009 Jan; 113(4):1127-31. PubMed ID: 19123911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van der Waals interactions at surfaces by density functional theory using Wannier functions.
    Silvestrelli PL; Benyahia K; Grubisiĉ S; Ancilotto F; Toigo F
    J Chem Phys; 2009 Feb; 130(7):074702. PubMed ID: 19239304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods.
    Caputo R; Prascher BP; Staemmler V; Bagus PS; Wöll C
    J Phys Chem A; 2007 Dec; 111(49):12778-84. PubMed ID: 17999480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional study of 1,3,5-trinitro-1,3,5-triazine molecular crystal with van der Waals interactions.
    Shimojo F; Wu Z; Nakano A; Kalia RK; Vashishta P
    J Chem Phys; 2010 Mar; 132(9):094106. PubMed ID: 20210388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional pentacene:3,4,9,10-perylenetetracarboxylic dianhydride supramolecular chiral networks on Ag(111).
    Chen W; Li H; Huang H; Fu Y; Zhang HL; Ma J; Wee AT
    J Am Chem Soc; 2008 Sep; 130(37):12285-9. PubMed ID: 18722423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties.
    Fernández EM; Balbás LC
    Phys Chem Chem Phys; 2011 Dec; 13(46):20863-70. PubMed ID: 22006277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic extended 2D structures: Fe-PTCDA on Au(111).
    Alvarez L; Peláez S; Caillard R; Serena PA; Martín-Gago JA; Méndez J
    Nanotechnology; 2010 Jul; 21(30):305703. PubMed ID: 20603531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate description of van der Waals complexes by density functional theory including empirical corrections.
    Grimme S
    J Comput Chem; 2004 Sep; 25(12):1463-73. PubMed ID: 15224390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of C6H6 and C6H12 with noble metal surfaces: electronic level alignment and the origin of the interface dipole.
    Bagus PS; Hermann K; Wöll C
    J Chem Phys; 2005 Nov; 123(18):184109. PubMed ID: 16292901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into the interactions between self-assembled adenine molecules and a Au(111) surface.
    Kelly RE; Xu W; Lukas M; Otero R; Mura M; Lee YJ; Laegsgaard E; Stensgaard I; Kantorovich LN; Besenbacher F
    Small; 2008 Sep; 4(9):1494-500. PubMed ID: 18680099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers.
    Madueno R; Räisänen MT; Silien C; Buck M
    Nature; 2008 Jul; 454(7204):618-21. PubMed ID: 18668104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of van der Waals interaction on the geometric and electronic properties of DNA nucleosides adsorbed on Cu(111) surface: a DFT study.
    Bogdan D; Morari C
    J Phys Chem A; 2013 Jun; 117(22):4669-78. PubMed ID: 23647023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.
    Sun YY; Kim YH; Lee K; Zhang SB
    J Chem Phys; 2008 Oct; 129(15):154102. PubMed ID: 19045171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azobenzene versus 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) at Au(111): characterizing the role of spacer groups.
    McNellis ER; Bronner C; Meyer J; Weinelt M; Tegeder P; Reuter K
    Phys Chem Chem Phys; 2010 Jun; 12(24):6404-12. PubMed ID: 20379594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems.
    Ruiz VG; Liu W; Zojer E; Scheffler M; Tkatchenko A
    Phys Rev Lett; 2012 Apr; 108(14):146103. PubMed ID: 22540809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.