BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20066390)

  • 1. Genome-based approaches to vaccine development.
    Mora M; Telford JL
    J Mol Med (Berl); 2010 Feb; 88(2):143-7. PubMed ID: 20066390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-based vaccine development: a short cut for the future.
    Moriel DG; Scarselli M; Serino L; Mora M; Rappuoli R; Masignani V
    Hum Vaccin; 2008; 4(3):184-8. PubMed ID: 20686357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New ways to identify novel bacterial antigens for vaccine development.
    Movahedi AR; Hampson DJ
    Vet Microbiol; 2008 Sep; 131(1-2):1-13. PubMed ID: 18372122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigen Discovery in Bacterial Panproteomes.
    Yero D; Conchillo-Solé O; Daura X
    Methods Mol Biol; 2021; 2183():43-62. PubMed ID: 32959240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Vaccine Candidates for Fish Pasteurellosis Using Reverse Vaccinology and an In Vitro Screening Approach.
    Andreoni F; Amagliani G; Magnani M
    Methods Mol Biol; 2016; 1404():181-192. PubMed ID: 27076298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An In Silico Identification of Common Putative Vaccine Candidates against Treponema pallidum: A Reverse Vaccinology and Subtractive Genomics Based Approach.
    Kumar Jaiswal A; Tiwari S; Jamal SB; Barh D; Azevedo V; Soares SC
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis.
    Kelly DF; Rappuoli R
    Adv Exp Med Biol; 2005; 568():217-23. PubMed ID: 16107075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-derived vaccines.
    De Groot AS; Rappuoli R
    Expert Rev Vaccines; 2004 Feb; 3(1):59-76. PubMed ID: 14761244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis.
    Gomez G; Adams LG; Rice-Ficht A; Ficht TA
    Front Cell Infect Microbiol; 2013; 3():17. PubMed ID: 23720712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Streptococcus mitis321A vaccine antigens based on reverse vaccinology.
    Zhang Q; Lin K; Wang C; Xu Z; Yang L; Ma Q
    Mol Med Rep; 2018 Jun; 17(6):7477-7486. PubMed ID: 29620181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of genomics in microbial vaccine development.
    Bambini S; Rappuoli R
    Drug Discov Today; 2009 Mar; 14(5-6):252-60. PubMed ID: 19150507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial genome variability and its impact on vaccine design.
    Telford JL
    Cell Host Microbe; 2008 Jun; 3(6):408-16. PubMed ID: 18541217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains.
    Fiuza TS; Lima JPMS; de Souza GA
    Front Immunol; 2020; 11():816. PubMed ID: 32431712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing vaccines in the era of genomics: a decade of reverse vaccinology.
    Seib KL; Zhao X; Rappuoli R
    Clin Microbiol Infect; 2012 Oct; 18 Suppl 5():109-16. PubMed ID: 22882709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of genome-derived vaccine candidates conserved between human and mouse-adapted strains of H. pylori.
    Moise L; McMurry JA; Pappo J; Lee DS; Moss SF; Martin WD; De Groot AS
    Hum Vaccin; 2008; 4(3):219-23. PubMed ID: 18376134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-based bacterial vaccines: current state and future outlook.
    Schubert-Unkmeir A; Christodoulides M
    BioDrugs; 2013 Oct; 27(5):419-30. PubMed ID: 23588477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigen identification starting from the genome: a "Reverse Vaccinology" approach applied to MenB.
    Palumbo E; Fiaschi L; Brunelli B; Marchi S; Savino S; Pizza M
    Methods Mol Biol; 2012; 799():361-403. PubMed ID: 21993656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.
    Heinson AI; Gunawardana Y; Moesker B; Hume CC; Vataga E; Hall Y; Stylianou E; McShane H; Williams A; Niranjan M; Woelk CH
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28157153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach.
    Amela I; Cedano J; Querol E
    PLoS One; 2007 Jun; 2(6):e512. PubMed ID: 17551592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.