BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20066711)

  • 1. Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides.
    Hsu CH; Chu KC; Lin YS; Han JL; Peng YS; Ren CT; Wu CY; Wong CH
    Chemistry; 2010 Feb; 16(6):1754-60. PubMed ID: 20066711
    [No Abstract]   [Full Text] [Related]  

  • 2. Highly stereoselective synthesis of primary, secondary, and tertiary α-S-sialosides under Lewis acidic conditions.
    Noel A; Delpech B; Crich D
    Org Lett; 2012 Aug; 14(16):4138-41. PubMed ID: 22844990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How O-substitution of sialyl donors affects their stereoselectivity.
    Premathilake HD; Gobble CP; Pornsuriyasak P; Hardimon T; Demchenko AV; De Meo C
    Org Lett; 2012 Feb; 14(4):1126-9. PubMed ID: 22300507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective synthesis of oligo-alpha-(2,8)-sialic acids.
    Tanaka H; Nishiura Y; Takahashi T
    J Am Chem Soc; 2006 Jun; 128(22):7124-5. PubMed ID: 16734441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective recognition of dihydrogen phosphate by receptors bearing pyridyl moieties as hydrogen bond acceptors.
    Kondo S; Hiraoka Y; Kurumatani N; Yano Y
    Chem Commun (Camb); 2005 Apr; (13):1720-2. PubMed ID: 15791310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sialylation reactions with 5-N,7-O-carbonyl-protected sialyl donors: unusual stereoselectivity with nitrile solvent assistance.
    Tanaka H; Ando H; Ishihara H; Koketsu M
    Carbohydr Res; 2008 Jul; 343(10-11):1585-93. PubMed ID: 18502408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities.
    Yu H; Chokhawala HA; Huang S; Chen X
    Nat Protoc; 2006; 1(5):2485-92. PubMed ID: 17406495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 5-Ureido-Modified Sialyl Donor: A Tool for the Synthesis of α-Sialosides.
    Tanase M; Imamura A; Ando H; Ishida H; Kiso M
    Org Lett; 2016 Mar; 18(6):1454-7. PubMed ID: 26938981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The α-Glycosidation of Partially Unprotected N-Acetyl and N-Glycolyl Sialyl Donors in the Absence of a Nitrile Solvent Effect.
    Aoyagi T; Ohira S; Fuse S; Uzawa J; Yamaguchi Y; Tanaka H
    Chemistry; 2016 May; 22(20):6968-73. PubMed ID: 27060996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first total synthesis of ganglioside HLG-2.
    Iwayama Y; Ando H; Ishida H; Kiso M
    Chemistry; 2009; 15(18):4637-48. PubMed ID: 19301339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient convergent synthesis of GP1c ganglioside epitope.
    Tanaka H; Nishiura Y; Takahashi T
    J Am Chem Soc; 2008 Dec; 130(51):17244-5. PubMed ID: 19053458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis of sialo-containing glycosyl amino acids by use of an N-trichloroethoxycarbonyl-beta-thiophenyl sialoside.
    Tanaka H; Adachi M; Takahashi T
    Chemistry; 2005 Jan; 11(3):849-62. PubMed ID: 15580651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation.
    Koilraj P; Kannan S
    J Colloid Interface Sci; 2010 Jan; 341(2):289-97. PubMed ID: 19857873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-trifluoroacetyl sialyl phosphite donors for the synthesis of alpha(2 --> 9) oligosialic acids.
    Lin CC; Huang KT; Lin CC
    Org Lett; 2005 Sep; 7(19):4169-72. PubMed ID: 16146379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient synthesis of the deoxysugar part of versipelostatin by direct and stereoselective glycosylation and revision of the structure of the trisaccharide unit.
    Tanaka H; Yoshizawa A; Chijiwa S; Ueda JY; Takagi M; Shin-ya K; Takahashi T
    Chem Asian J; 2009 Jul; 4(7):1114-25. PubMed ID: 19347890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis of polyprenyl sialyl phosphate, a probable biosynthetic intermediate of bacterial polysialic acid.
    Shpirt AM; Kononov LO; Maltsev SD; Shibaev VN
    Carbohydr Res; 2011 Dec; 346(18):2849-54. PubMed ID: 22055819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A zinc(II)-based receptor for ATP binding and hydrolysis.
    Bazzicalupi C; Bencini A; Bianchi A; Danesi A; Giorgi C; Lodeiro C; Pina F; Santarelli S; Valtancoli B
    Chem Commun (Camb); 2005 May; (20):2630-2. PubMed ID: 15900350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and reactivity of a C3-symmetric trinuclear zinc(II) hydroxide catalyst efficient at phosphate diester transesterification.
    Mitra R; Peters MW; Scott MJ
    Dalton Trans; 2007 Sep; (35):3924-35. PubMed ID: 17893790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies on the O-sialylation with four different α/β-oriented (N-acetyl)-5-N,4-O-carbonyl-protected p-toluenethiosialosides as donors.
    Zhang XT; Gu ZY; Xing GW
    Carbohydr Res; 2014 Mar; 388():1-7. PubMed ID: 24594527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration phenomena of sodium and potassium hydroxides by water molecules.
    Kumar A; Park M; Huh JY; Lee HM; Kim KS
    J Phys Chem A; 2006 Nov; 110(45):12484-93. PubMed ID: 17091954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.