These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20067255)

  • 1. C-H bond activation in transition metal species from a computational perspective.
    Balcells D; Clot E; Eisenstein O
    Chem Rev; 2010 Feb; 110(2):749-823. PubMed ID: 20067255
    [No Abstract]   [Full Text] [Related]  

  • 2. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation.
    Cho SH; Kim JY; Kwak J; Chang S
    Chem Soc Rev; 2011 Oct; 40(10):5068-83. PubMed ID: 21643614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis.
    Dobereiner GE; Crabtree RH
    Chem Rev; 2010 Feb; 110(2):681-703. PubMed ID: 19938813
    [No Abstract]   [Full Text] [Related]  

  • 4. Understanding the reactivity of the tetrahedrally coordinated high-valence d0 transition metal oxides toward the C-H bond activation of alkanes: a cluster model study.
    Fu G; Chen ZN; Xu X; Wan HL
    J Phys Chem A; 2008 Jan; 112(4):717-21. PubMed ID: 18179189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-selective transition-metal catalyzed arene C-H bond functionalization.
    Zhou Y; Zhao J; Liu L
    Angew Chem Int Ed Engl; 2009; 48(39):7126-8. PubMed ID: 19655360
    [No Abstract]   [Full Text] [Related]  

  • 6. C-H activation by a mononuclear manganese(III) hydroxide complex: synthesis and characterization of a manganese-lipoxygenase mimic?
    Goldsmith CR; Cole AP; Stack TD
    J Am Chem Soc; 2005 Jul; 127(27):9904-12. PubMed ID: 15998097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative addition of the Cα-Cβ bond in β-O-4 linkage of lignin to transition metals using a relativistic pseudopotential-based ccCA-ONIOM method.
    Oyedepo GA; Wilson AK
    Chemphyschem; 2011 Dec; 12(17):3320-30. PubMed ID: 22144374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation.
    Rakowski DuBois M; DuBois DL
    Chem Soc Rev; 2009 Jan; 38(1):62-72. PubMed ID: 19088965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature activation of methane: it also works without a transition metal.
    Schröder D; Roithová J
    Angew Chem Int Ed Engl; 2006 Aug; 45(34):5705-8. PubMed ID: 16858710
    [No Abstract]   [Full Text] [Related]  

  • 11. Cross coupling reactions of polyfluoroarenes via C-F activation.
    Sun AD; Love JA
    Dalton Trans; 2010 Nov; 39(43):10362-74. PubMed ID: 20938555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric reductive amination by combined Brønsted acid and transition-metal catalysis.
    Klussmann M
    Angew Chem Int Ed Engl; 2009; 48(39):7124-5. PubMed ID: 19718737
    [No Abstract]   [Full Text] [Related]  

  • 13. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts.
    Hari DP; Schroll P; König B
    J Am Chem Soc; 2012 Feb; 134(6):2958-61. PubMed ID: 22296099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.
    Punniyamurthy T; Velusamy S; Iqbal J
    Chem Rev; 2005 Jun; 105(6):2329-63. PubMed ID: 15941216
    [No Abstract]   [Full Text] [Related]  

  • 15. Theoretical study of the rhenium-alkane interaction in transition metal-alkane sigma-complexes.
    Cobar EA; Khaliullin RZ; Bergman RG; Head-Gordon M
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6963-8. PubMed ID: 17442751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition in homogeneous transition metal catalysis: a biomimetic strategy for high selectivity.
    Das S; Brudvig GW; Crabtree RH
    Chem Commun (Camb); 2008 Jan; (4):413-24. PubMed ID: 18188458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and exploiting C-H bond activation.
    Labinger JA; Bercaw JE
    Nature; 2002 May; 417(6888):507-14. PubMed ID: 12037558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation.
    Weiss CJ; Marks TJ
    Dalton Trans; 2010 Aug; 39(29):6576-88. PubMed ID: 20490409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds.
    Smith AM; Hii KK
    Chem Rev; 2011 Mar; 111(3):1637-56. PubMed ID: 20954710
    [No Abstract]   [Full Text] [Related]  

  • 20. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.
    Giri R; Shi BF; Engle KM; Maugel N; Yu JQ
    Chem Soc Rev; 2009 Nov; 38(11):3242-72. PubMed ID: 19847354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.