These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 20067709)
1. Investigation of DNA spectral conformational changes and polymer buffering capacity in relation to transfection efficiency of DNA/polymer complexes. Cherng JY J Pharm Pharm Sci; 2009; 12(3):346-56. PubMed ID: 20067709 [TBL] [Abstract][Full Text] [Related]
2. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Funhoff AM; van Nostrum CF; Koning GA; Schuurmans-Nieuwenbroek NM; Crommelin DJ; Hennink WE Biomacromolecules; 2004; 5(1):32-9. PubMed ID: 14715005 [TBL] [Abstract][Full Text] [Related]
3. Dependence of transgene expression and the relative buffering capacity of dextran-grafted polyethylenimine. Tseng WC; Fang TY; Su LY; Tang CH Mol Pharm; 2005; 2(3):224-32. PubMed ID: 15934783 [TBL] [Abstract][Full Text] [Related]
4. Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes. Sharma R; Lee JS; Bettencourt RC; Xiao C; Konieczny SF; Won YY Biomacromolecules; 2008 Nov; 9(11):3294-307. PubMed ID: 18942877 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of transfection efficiency through rapid and noncovalent post-PEGylation of poly(dimethylaminoethyl methacrylate)/DNA complexes. Pirotton S; Muller C; Pantoustier N; Botteman F; Collinet S; Grandfils C; Dandrifosse G; Degée P; Dubois P; Raes M Pharm Res; 2004 Aug; 21(8):1471-9. PubMed ID: 15359584 [TBL] [Abstract][Full Text] [Related]
6. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. Han S; Wan H; Lin D; Guo S; Dong H; Zhang J; Deng L; Liu R; Tang H; Dong A Acta Biomater; 2014 Feb; 10(2):670-9. PubMed ID: 24096149 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of piezoelectric components for a tunable and efficient device for DNA delivery into mammalian cells. Hung WC; Feng GH; Cherng JY Ultrason Sonochem; 2014 Mar; 21(2):819-25. PubMed ID: 24071563 [TBL] [Abstract][Full Text] [Related]
8. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Akinc A; Thomas M; Klibanov AM; Langer R J Gene Med; 2005 May; 7(5):657-63. PubMed ID: 15543529 [TBL] [Abstract][Full Text] [Related]
9. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Aravindan L; Bicknell KA; Brooks G; Khutoryanskiy VV; Williams AC Int J Pharm; 2009 Aug; 378(1-2):201-10. PubMed ID: 19501146 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Tseng SJ; Tang SC; Shau MD; Zeng YF; Cherng JY; Shih MF Bioconjug Chem; 2005; 16(6):1375-81. PubMed ID: 16287233 [TBL] [Abstract][Full Text] [Related]
11. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. Funhoff AM; van Nostrum CF; Lok MC; Kruijtzer JA; Crommelin DJ; Hennink WE J Control Release; 2005 Jan; 101(1-3):233-46. PubMed ID: 15588908 [TBL] [Abstract][Full Text] [Related]
12. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Jiang X; Lok MC; Hennink WE Bioconjug Chem; 2007; 18(6):2077-84. PubMed ID: 17927133 [TBL] [Abstract][Full Text] [Related]
13. Incorporation of poly[(R)-3-hydroxybutyrate] into cationic copolymers based on poly(2-(dimethylamino)ethyl methacrylate) to improve gene delivery. Loh XJ; Ong SJ; Tung YT; Choo HT Macromol Biosci; 2013 Aug; 13(8):1092-9. PubMed ID: 23703863 [TBL] [Abstract][Full Text] [Related]
14. The role of dextran conjugation in transfection mediated by dextran-grafted polyethylenimine. Tseng WC; Tang CH; Fang TY J Gene Med; 2004 Aug; 6(8):895-905. PubMed ID: 15293348 [TBL] [Abstract][Full Text] [Related]
15. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. van der Aa MA; Huth US; Häfele SY; Schubert R; Oosting RS; Mastrobattista E; Hennink WE; Peschka-Süss R; Koning GA; Crommelin DJ Pharm Res; 2007 Aug; 24(8):1590-8. PubMed ID: 17385010 [TBL] [Abstract][Full Text] [Related]
16. Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Yang C; Li H; Goh SH; Li J Biomaterials; 2007 Jul; 28(21):3245-54. PubMed ID: 17466370 [TBL] [Abstract][Full Text] [Related]
17. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Sunshine JC; Peng DY; Green JJ Mol Pharm; 2012 Nov; 9(11):3375-83. PubMed ID: 22970908 [TBL] [Abstract][Full Text] [Related]
18. The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers. Venkataraman S; Ong WL; Ong ZY; Joachim Loo SC; Ee PL; Yang YY Biomaterials; 2011 Mar; 32(9):2369-78. PubMed ID: 21186058 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterizations of new glycidyl-based cationic poly(aminoester) and study on gene delivery. Lin CH; Hsiao YC; Shau MD Int J Pharm; 2010 Jun; 393(1-2):135-42. PubMed ID: 20420887 [TBL] [Abstract][Full Text] [Related]
20. A discussion of the pH-dependent protonation behaviors of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(ethylenimine-ran-2-ethyl-2-oxazoline) (P(EI-r-EOz)). Lee H; Son SH; Sharma R; Won YY J Phys Chem B; 2011 Feb; 115(5):844-60. PubMed ID: 21210675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]