These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 20067782)
1. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Momose Y; Matsumoto R; Maruyama A; Yamaoka M Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782 [TBL] [Abstract][Full Text] [Related]
2. Cryoprotectants lead to phenotypic adaptation to freeze-thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Panoff JM; Thammavongs B; Guéguen M Cryobiology; 2000 May; 40(3):264-9. PubMed ID: 10860625 [TBL] [Abstract][Full Text] [Related]
3. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Odintsova NA; Boroda AV; Velansky PV; Kostetsky EY Cryobiology; 2009 Dec; 59(3):335-43. PubMed ID: 19778531 [TBL] [Abstract][Full Text] [Related]
4. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Seo JM; Sohn MY; Suh JS; Atala A; Yoo JJ; Shon YH Cryobiology; 2011 Jun; 62(3):167-73. PubMed ID: 21335000 [TBL] [Abstract][Full Text] [Related]
5. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Ando A; Nakamura T; Murata Y; Takagi H; Shima J FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656 [TBL] [Abstract][Full Text] [Related]
6. Video analysis of osmotic cell response during cryopreservation. Spindler R; Rosenhahn B; Hofmann N; Glasmacher B Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926 [TBL] [Abstract][Full Text] [Related]
7. A modified perlite protocol with a mixed dimethyl sulfoxide and trehalose cryoprotectant improves the viability of frozen cultures of ectomycorrhizal basidiomycetes. Sato M; Inaba S; Sukenobe J; Sasaki T; Inoue R; Noguchi M; Nakagiri A Mycologia; 2019; 111(1):161-176. PubMed ID: 30714878 [TBL] [Abstract][Full Text] [Related]
8. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide. Motta JP; Gomes BE; Bouzas LF; Paraguassú-Braga FH; Porto LC Cryobiology; 2010 Jun; 60(3):301-7. PubMed ID: 20152822 [TBL] [Abstract][Full Text] [Related]
9. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture. Odintsova NA; Ageenko NV; Kipryushina YO; Maiorova MA; Boroda AV Cryobiology; 2015 Aug; 71(1):54-63. PubMed ID: 26049089 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Rodrigues JP; Paraguassú-Braga FH; Carvalho L; Abdelhay E; Bouzas LF; Porto LC Cryobiology; 2008 Apr; 56(2):144-51. PubMed ID: 18313656 [TBL] [Abstract][Full Text] [Related]
12. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Li L; Ye Y; Pan L; Zhu Y; Zheng S; Lin Y Biochem Biophys Res Commun; 2009 Oct; 387(4):778-83. PubMed ID: 19635452 [TBL] [Abstract][Full Text] [Related]
13. Culturing with trehalose produces viable endothelial cells after cryopreservation. Campbell LH; Brockbank KG Cryobiology; 2012 Jun; 64(3):240-4. PubMed ID: 22366172 [TBL] [Abstract][Full Text] [Related]
14. Cryopreservation of primary cell cultures of marine invertebrates. Odintsova N; Kiselev K; Sanina N; Kostetsky E Cryo Letters; 2001; 22(5):299-310. PubMed ID: 11788872 [TBL] [Abstract][Full Text] [Related]
15. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae. Stoycheva T; Venkov P; Tsvetkov Ts Cryobiology; 2007 Jun; 54(3):243-50. PubMed ID: 17416359 [TBL] [Abstract][Full Text] [Related]
16. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Rudolph AS; Crowe JH Cryobiology; 1985 Aug; 22(4):367-77. PubMed ID: 4028782 [TBL] [Abstract][Full Text] [Related]
17. Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids. Pandey G; Yoshikawa K; Hirasawa T; Nagahisa K; Katakura Y; Furusawa C; Shimizu H; Shioya S Appl Microbiol Biotechnol; 2007 May; 75(2):415-26. PubMed ID: 17262206 [TBL] [Abstract][Full Text] [Related]
18. Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. Limaye LS; Kale VP J Hematother Stem Cell Res; 2001 Oct; 10(5):709-18. PubMed ID: 11672518 [TBL] [Abstract][Full Text] [Related]
19. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J; Takagi H Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439 [TBL] [Abstract][Full Text] [Related]
20. Protective effects of osmolytes in cryopreserving adherent neuroblastoma (Neuro-2a) cells. Bailey TL; Wang M; Solocinski J; Nathan BP; Chakraborty N; Menze MA Cryobiology; 2015 Dec; 71(3):472-80. PubMed ID: 26408850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]