These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20068356)

  • 1. Bacterial and eukaryotic phosphoketolases: phylogeny, distribution and evolution.
    Sánchez B; Zúñiga M; González-Candelas F; de los Reyes-Gavilán CG; Margolles A
    J Mol Microbiol Biotechnol; 2010; 18(1):37-51. PubMed ID: 20068356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico sequence analysis of arylamine N-acetyltransferases: evidence for an absence of lateral gene transfer from bacteria to vertebrates and first description of paralogs in bacteria.
    Rodrigues-Lima F; Dupret JM
    Biochem Biophys Res Commun; 2002 May; 293(2):783-92. PubMed ID: 12054539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.
    Jones CM; Stres B; Rosenquist M; Hallin S
    Mol Biol Evol; 2008 Sep; 25(9):1955-66. PubMed ID: 18614527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
    Vitulo N; Vezzi A; Romualdi C; Campanaro S; Valle G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S23. PubMed ID: 17430568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates.
    Stanhope MJ; Lupas A; Italia MJ; Koretke KK; Volker C; Brown JR
    Nature; 2001 Jun; 411(6840):940-4. PubMed ID: 11418856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.
    Moriyama T; Tajima N; Sekine K; Sato N
    Biosci Biotechnol Biochem; 2015; 79(5):767-74. PubMed ID: 25530123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetics and the cohesion of bacterial genomes.
    Daubin V; Moran NA; Ochman H
    Science; 2003 Aug; 301(5634):829-32. PubMed ID: 12907801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial molecular phylogeny using supertree approach.
    Daubin V; Gouy M; Perrière G
    Genome Inform; 2001; 12():155-64. PubMed ID: 11791234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the occurrence of horizontal gene transfer among an arbitrarily chosen group of 26 genes.
    Syvanen M
    J Mol Evol; 2002 Feb; 54(2):258-66. PubMed ID: 11821918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organisation of the S10, spc and alpha ribosomal protein gene clusters in prokaryotic genomes.
    Coenye T; Vandamme P
    FEMS Microbiol Lett; 2005 Jan; 242(1):117-26. PubMed ID: 15621428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of the bacterial SET domain genes: vertical or horizontal?
    Alvarez-Venegas R; Sadder M; Tikhonov A; Avramova Z
    Mol Biol Evol; 2007 Feb; 24(2):482-97. PubMed ID: 17148507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota.
    Klotz MG; Loewen PC
    Mol Biol Evol; 2003 Jul; 20(7):1098-112. PubMed ID: 12777528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting lateral genetic transfer : a phylogenetic approach.
    Beiko RG; Ragan MA
    Methods Mol Biol; 2008; 452():457-69. PubMed ID: 18566777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
    Andersson JO; Sarchfield SW; Roger AJ
    Mol Biol Evol; 2005 Jan; 22(1):85-90. PubMed ID: 15356278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.
    Podell S; Gaasterland T; Allen EE
    BMC Bioinformatics; 2008 Oct; 9():419. PubMed ID: 18840280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria.
    Brochier C; López-García P; Moreira D
    Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal gene transfer in the molecular evolution of mannose PTS transporters.
    Zúñiga M; Comas I; Linaje R; Monedero V; Yebra MJ; Esteban CD; Deutscher J; Pérez-Martínez G; González-Candelas F
    Mol Biol Evol; 2005 Aug; 22(8):1673-85. PubMed ID: 16006479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Displacement of epsilon-proteobacterial core genes by horizontally transferred homologous genes.
    Coenye T; Vandamme P
    Res Microbiol; 2005; 156(5-6):738-47. PubMed ID: 15950129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.