These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 20068647)
1. A practical multiple reflection technique for improving the quantum efficiency of photomultiplier tubes. Oke JB; Schild RE Appl Opt; 1968 Apr; 7(4):617-22. PubMed ID: 20068647 [TBL] [Abstract][Full Text] [Related]
2. Improvements in photomultipliers with total internal reflection sensitivity enhancement. Hirschfeld T Appl Opt; 1968 Mar; 7(3):443-50. PubMed ID: 20068609 [TBL] [Abstract][Full Text] [Related]
3. The efficient use of photomultiplier tubes for recording spectra. Rolfe J; Moore SE Appl Opt; 1970 Jan; 9(1):63-71. PubMed ID: 20076137 [TBL] [Abstract][Full Text] [Related]
4. Optical devices to increase photocathode quantum efficiency. Gunter WD; Grant GR; Shaw SA Appl Opt; 1970 Feb; 9(2):251-7. PubMed ID: 20076179 [TBL] [Abstract][Full Text] [Related]
5. Correction techniques for a multilevel reflection scanner. Rosenthal JA; Serednicky P Appl Opt; 1969 Nov; 8(11):2333-8. PubMed ID: 20076021 [TBL] [Abstract][Full Text] [Related]
6. The use of photomultiplier tubes for photon counting. Foord R; Jones R; Oliver CJ; Pike ER Appl Opt; 1969 Oct; 8(10):1975-89. PubMed ID: 20072559 [TBL] [Abstract][Full Text] [Related]
10. High speed optical quantum random number generation. Fürst M; Weier H; Nauerth S; Marangon DG; Kurtsiefer C; Weinfurter H Opt Express; 2010 Jun; 18(12):13029-37. PubMed ID: 20588431 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of magnetic defocusing for a photomultiplier tube with large area semitransparent photocathode. Knight W; Kohanzadeh Y; Lengyel G Appl Opt; 1968 Jun; 7(6):1115-20. PubMed ID: 20068748 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube. Peng Q; Choong WS; Moses WW IEEE Trans Nucl Sci; 2013 Oct; 60(5):3212-3219. PubMed ID: 24526798 [TBL] [Abstract][Full Text] [Related]
13. Calibration and standardization of the emission light path of confocal microscopes. Cho EH; Lockett SJ J Microsc; 2006 Jul; 223(Pt 1):15-25. PubMed ID: 16872427 [TBL] [Abstract][Full Text] [Related]
14. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Nozik AJ Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844 [TBL] [Abstract][Full Text] [Related]
15. Photomultiplier tubes for Satellite instrumentation. Schlueter P Appl Opt; 1967 Feb; 6(2):239-44. PubMed ID: 20057736 [TBL] [Abstract][Full Text] [Related]
16. Photomultiplier tubes in biosensors. Guan Y Methods Mol Biol; 2009; 503():375-87. PubMed ID: 19151953 [TBL] [Abstract][Full Text] [Related]
18. A series of tufted carbon fiber cathodes designed for different high power microwave sources. Liu L; Li L; Zhang J; Zhang X; Wen J; Liu Y Rev Sci Instrum; 2008 Jun; 79(6):064701. PubMed ID: 18601423 [TBL] [Abstract][Full Text] [Related]
19. Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Sajoto T; Djurovich PI; Tamayo A; Yousufuddin M; Bau R; Thompson ME; Holmes RJ; Forrest SR Inorg Chem; 2005 Oct; 44(22):7992-8003. PubMed ID: 16241149 [TBL] [Abstract][Full Text] [Related]
20. Photoelectron counting in the extreme ultraviolet. Heroux L Appl Opt; 1968 Dec; 7(12):2351-60. PubMed ID: 20069005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]