These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 20068655)

  • 1. A theory of broadband matching for optical heterodyne receivers.
    Prabhu VK
    Appl Opt; 1968 Apr; 7(4):657-66. PubMed ID: 20068655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the problem of broadband signal and noise performance of direct detection optical receivers.
    Prabhu VK
    Appl Opt; 1968 Dec; 7(12):2401-8. PubMed ID: 20069012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gain-controlled semiconductor optical preamplifier for the 100 Gbit/s 40 km Ethernet receiver.
    Gutierrez-Castrejon R; Dolores-Calzadilla V; Duelk M
    Appl Opt; 2009 Sep; 48(25):F82-9. PubMed ID: 19724319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne receivers for atmospheric optical communications.
    Churnside JH; McIntyre CM
    Appl Opt; 1980 Feb; 19(4):582-90. PubMed ID: 20216897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterodyne and photon-counting receivers for optical communications.
    Fried DL; Seidman JB
    Appl Opt; 1967 Feb; 6(2):245-50. PubMed ID: 20057737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 2: Experiment.
    Churnside JH; McIntyre CM
    Appl Opt; 1978 Jul; 17(14):2148-52. PubMed ID: 20203748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandpass sampling in heterodyne receivers for coherent optical access networks.
    Bakopoulos P; Dris S; Schrenk B; Lazarou I; Avramopoulos H
    Opt Express; 2012 Dec; 20(28):29404-12. PubMed ID: 23388768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a Specially Designed GaAS Schottky-Barrier Photodiode Using 6328-A Radiation Modulated at 4 GHz.
    Sharpless WM
    Appl Opt; 1970 Feb; 9(2):489-94. PubMed ID: 20076215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband semiconductor laser.
    Gmachl C; Sivco DL; Colombelli R; Capasso F; Cho AY
    Nature; 2002 Feb; 415(6874):883-7. PubMed ID: 11859362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antenna properties of optical heterodyne receivers.
    Siegman AE
    Appl Opt; 1966 Oct; 5(10):1588-94. PubMed ID: 20057593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching using estimated propensity scores: relating theory to practice.
    Rubin DB; Thomas N
    Biometrics; 1996 Mar; 52(1):249-64. PubMed ID: 8934595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: theory.
    Churnside JH; McIntyre CM
    Appl Opt; 1978 Jul; 17(14):2141-7. PubMed ID: 20203747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorless WDM-PON based on a Fabry-Pérot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal.
    Pham TT; Kim HS; Won YY; Han SK
    Opt Express; 2009 Sep; 17(19):16571-80. PubMed ID: 19770872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linearity of a Silicon Photodiode at 30 MHz and Its Effect on Heterodyne Measurements.
    Migdall AL; Winnewisser C
    J Res Natl Inst Stand Technol; 1991; 96(2):143-146. PubMed ID: 28184106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of signal to noise ratio in optical free space data links due to background illumination.
    Leeb WR
    Appl Opt; 1989 Aug; 28(16):3443-9. PubMed ID: 20555719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical antenna gain. 2: receiving antennas.
    Degnan JJ; Klein BJ
    Appl Opt; 1974 Oct; 13(10):2397-401. PubMed ID: 20134695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial filtering properties of the reference beam in an optical heterodyne receiver.
    Mayo WT
    Appl Opt; 1970 May; 9(5):1159-62. PubMed ID: 20076344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.
    Van Campenhout J; Green WM; Vlasov YA
    Opt Express; 2009 Dec; 17(26):23793-808. PubMed ID: 20052090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental constraints on the performance of broadband ultrasonic matching structures and absorbers.
    Acher O; Bernard JM; Maréchal P; Bardaine A; Levassort F
    J Acoust Soc Am; 2009 Apr; 125(4):1995-2005. PubMed ID: 19354375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocounting array receivers for optical communication through the lognormal atmospheric channel. 2: optimum and suboptimum receiver performance for binary signaling.
    Rosenberg S; Teich MC
    Appl Opt; 1973 Nov; 12(11):2625-35. PubMed ID: 20125838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.