BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20069409)

  • 1. Effects of aestivation on skeletal muscle performance.
    James RS
    Prog Mol Subcell Biol; 2010; 49():171-81. PubMed ID: 20069409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata (Gunther 1867).
    Symonds BL; James RS; Franklin CE
    J Exp Biol; 2007 Mar; 210(Pt 5):825-35. PubMed ID: 17297142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle atrophy occurs slowly and selectively during prolonged aestivation in Cyclorana alboguttata (Gunther 1867).
    Mantle BL; Hudson NJ; Harper GS; Cramp RL; Franklin CE
    J Exp Biol; 2009 Nov; 212(Pt 22):3664-72. PubMed ID: 19880728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Each to their own: skeletal muscles of different function use different biochemical strategies during aestivation at high temperature.
    Young KM; Cramp RL; Franklin CE
    J Exp Biol; 2013 Mar; 216(Pt 6):1012-24. PubMed ID: 23197095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How important are skeletal muscle mechanics in setting limits on jumping performance?
    James RS; Navas CA; Herrel A
    J Exp Biol; 2007 Mar; 210(Pt 6):923-33. PubMed ID: 17337705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.
    Young KM; Cramp RL; White CR; Franklin CE
    J Exp Biol; 2011 Nov; 214(Pt 22):3782-9. PubMed ID: 22031743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological plasticity of vertebrate aestivation.
    Secor SM; Lignot JH
    Prog Mol Subcell Biol; 2010; 49():183-208. PubMed ID: 20069410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation.
    Ong JL; Chng YR; Ching B; Chen XL; Hiong KC; Wong WP; Chew SF; Ip YK
    J Comp Physiol B; 2017 May; 187(4):575-589. PubMed ID: 28184997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of aestivation on muscle characteristics and locomotor performance in the green-striped burrowing frog, Cyclorana alboguttata.
    Hudson NJ; Franklin CE
    J Comp Physiol B; 2002 Feb; 172(2):177-82. PubMed ID: 11916112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frogs and estivation: transcriptional insights into metabolism and cell survival in a natural model of extended muscle disuse.
    Reilly BD; Schlipalius DI; Cramp RL; Ebert PR; Franklin CE
    Physiol Genomics; 2013 May; 45(10):377-88. PubMed ID: 23548685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model.
    Roy RR; Baldwin KM; Edgerton VR
    Exerc Sport Sci Rev; 1996; 24():399-425. PubMed ID: 8744257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of prolonged inactivity on skeletal motor nerve terminals during aestivation in the burrowing frog, Cyclorana alboguttata.
    Hudson NJ; Lavidis NA; Choy PT; Franklin CE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):373-9. PubMed ID: 15647924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining muscle mass during extended disuse: aestivating frogs as a model species.
    Hudson NJ; Franklin CE
    J Exp Biol; 2002 Aug; 205(Pt 15):2297-303. PubMed ID: 12110663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot and steady: Elevated temperatures do not enhance muscle disuse atrophy during prolonged aestivation in the ectotherm Cyclorana alboguttata.
    Young KM; Cramp RL; Franklin CE
    J Morphol; 2013 Feb; 274(2):165-74. PubMed ID: 22996762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle extracellular matrix remodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata.
    Hudson NJ; Harper GS; Allingham PG; Franklin CE; Barris W; Lehnert SA
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):440-5. PubMed ID: 17258486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increases in urea synthesis and the ornithine-urea cycle capacity in the giant African snail, Achatina fulica, during fasting or aestivation, or after the injection with ammonium chloride.
    Hiong KC; Loong AM; Chew SF; Ip YK
    J Exp Zool A Comp Exp Biol; 2005 Dec; 303(12):1040-53. PubMed ID: 16254923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of muscle size during disuse, disease, and aging.
    Degens H; Alway SE
    Int J Sports Med; 2006 Feb; 27(2):94-9. PubMed ID: 16475053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen metabolism and excretion during aestivation.
    Ip YK; Chew SF
    Prog Mol Subcell Biol; 2010; 49():63-94. PubMed ID: 20069405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.