These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20069409)

  • 41. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.
    Hodson-Tole EF; Wakeling JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1882-92. PubMed ID: 18515718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spermatogenesis and plasma testosterone levels in Western Australian burrowing desert frogs, Cyclorana platycephala, Cyclorana maini, and Neobatrachus sutor, during aestivation.
    Shalan AG; Bradshaw SD; Withers PC; Thompson G; Bayomy MF; Bradshaw FJ; Stewart T
    Gen Comp Endocrinol; 2004 Mar; 136(1):90-100. PubMed ID: 14980800
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simple neuro-mechanical measure of the locomotor skill: an example of backward somersault.
    Medved V; Tonkovíc S; Cifrek M
    Med Prog Technol; 1995 May; 21(2):77-84. PubMed ID: 7565398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Environmentally induced mechanical feedback in locomotion: frog performance as a model.
    Aerts P; Nauwelaerts S
    J Theor Biol; 2009 Dec; 261(3):372-8. PubMed ID: 19683011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tribute to R. G. Boutilier: the role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs.
    West TG; Donohoe PH; Staples JF; Askew GN
    J Exp Biol; 2006 Apr; 209(Pt 7):1159-68. PubMed ID: 16547288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preservation of three-dimensional capillary structure in frog muscle during aestivation.
    Hudson NJ; Franklin CE
    J Anat; 2003 May; 202(5):471-4. PubMed ID: 12739624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of calcium and vesicle-docking proteins in remobilising dormant neuromuscular junctions in desert frogs.
    Lavidis NA; Hudson NJ; Choy PT; Lehnert SA; Franklin CE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):27-37. PubMed ID: 17987295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The alimentary canal of the African lungfish Protopterus annectens during aestivation and after arousal.
    Icardo JM; Loong AM; Colvee E; Wong WP; Ip YK
    Anat Rec (Hoboken); 2012 Jan; 295(1):60-72. PubMed ID: 21964967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is re-feeding efficiency compromised by prolonged starvation during aestivation in the green striped burrowing frog, Cyclorana alboguttata?
    Cramp RL; Franklin CE
    J Exp Zool A Comp Exp Biol; 2003 Dec; 300(2):126-32. PubMed ID: 14648672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales.
    Shadwick RE; Goldbogen JA; Potvin J; Pyenson ND; Vogl AW
    J Exp Biol; 2013 Jul; 216(Pt 14):2691-701. PubMed ID: 23580724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. What is new in neuro-musculoskeletal interactions: from medical myths to YouTube.
    Rauch F
    J Musculoskelet Neuronal Interact; 2010 Sep; 10(3):191-2. PubMed ID: 20811142
    [No Abstract]   [Full Text] [Related]  

  • 52. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States.
    Jiang C; Storey KB; Yang H; Sun L
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amphibious fish jump better on land after acclimation to a terrestrial environment.
    Brunt EM; Turko AJ; Scott GR; Wright PA
    J Exp Biol; 2016 Oct; 219(Pt 20):3204-3207. PubMed ID: 27591317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Terrestrial Zen master: Transcriptomics in long-term aestivation and arousal of Mediterranean earthworms.
    Tilikj N; Martínez Navarro A; Novo M
    J Exp Zool A Ecol Integr Physiol; 2023 Jul; 339(6):545-564. PubMed ID: 37013400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour.
    James RS; Tallis J
    Conserv Physiol; 2019; 7(1):coz066. PubMed ID: 31687144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dramatic genome-wide reprogramming of mRNA in hypometabolic muscle.
    Hudson NJ; Cramp RL; Franklin CE
    Comp Biochem Physiol B Biochem Mol Biol; 2024; 272():110952. PubMed ID: 38355035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Passive skeletal muscle mechanical behaviour: considerations for constitutive modelling.
    Simms CK
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():271. PubMed ID: 23009504
    [No Abstract]   [Full Text] [Related]  

  • 58. Metabolic rate suppression as a mechanism for surviving environmental challenge in fish.
    Richards JG
    Prog Mol Subcell Biol; 2010; 49():113-39. PubMed ID: 20069407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complexity of modular neuromuscular control increases and variability decreases during human locomotor development.
    Sylos-Labini F; La Scaleia V; Cappellini G; Dewolf A; Fabiano A; Solopova IA; Mondì V; Ivanenko Y; Lacquaniti F
    Commun Biol; 2022 Nov; 5(1):1256. PubMed ID: 36385628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Eliminating high-intensity activity during growth reduces mechanical power capacity but not submaximal metabolic cost in a bipedal animal model.
    Cox SM; Salzano MQ; Piazza SJ; Rubenson J
    J Appl Physiol (1985); 2020 Jan; 128(1):50-58. PubMed ID: 31751181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.