These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20069621)

  • 1. Architectural repertoire of ligand-binding pockets on protein surfaces.
    Weisel M; Kriegl JM; Schneider G
    Chembiochem; 2010 Mar; 11(4):556-63. PubMed ID: 20069621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships.
    Gold ND; Jackson RM
    J Mol Biol; 2006 Feb; 355(5):1112-24. PubMed ID: 16359705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria.
    Peters KP; Fauck J; Frömmel C
    J Mol Biol; 1996 Feb; 256(1):201-13. PubMed ID: 8609611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of local geometry of protein surfaces with the visibility criterion.
    Li B; Turuvekere S; Agrawal M; La D; Ramani K; Kihara D
    Proteins; 2008 May; 71(2):670-83. PubMed ID: 17975834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding response: a descriptor for selecting ligand binding site on protein surfaces.
    Zhong S; MacKerell AD
    J Chem Inf Model; 2007; 47(6):2303-15. PubMed ID: 17900106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions.
    Fernandez-Ballester G; Beltrao P; Gonzalez JM; Song YH; Wilmanns M; Valencia A; Serrano L
    J Mol Biol; 2009 May; 388(4):902-16. PubMed ID: 19324052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.
    Weill N; Rognan D
    J Chem Inf Model; 2010 Jan; 50(1):123-35. PubMed ID: 20058856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials.
    Hoppe C; Steinbeck C; Wohlfahrt G
    J Mol Graph Model; 2006 Mar; 24(5):328-40. PubMed ID: 16260161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational approaches to identifying and characterizing protein binding sites for ligand design.
    Henrich S; Salo-Ahen OM; Huang B; Rippmann FF; Cruciani G; Wade RC
    J Mol Recognit; 2010; 23(2):209-19. PubMed ID: 19746440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
    Jayalakshmi V; Rama Krishna N
    J Magn Reson; 2004 May; 168(1):36-45. PubMed ID: 15082247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based identification of small molecule binding sites using a free energy model.
    Coleman RG; Salzberg AC; Cheng AC
    J Chem Inf Model; 2006; 46(6):2631-7. PubMed ID: 17125203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Computer drug design based on analysis of a target macromolecule structure. I. Search and description of a ligand binding site in a target molecule].
    Ivanov AS; Dubanov AV; Skvortsov VS; Archakov AI
    Vopr Med Khim; 2002; 48(3):304-15. PubMed ID: 12243090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.
    Kupas K; Ultsch A; Klebe G
    Proteins; 2008 May; 71(3):1288-306. PubMed ID: 18041748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape variation in protein binding pockets and their ligands.
    Kahraman A; Morris RJ; Laskowski RA; Thornton JM
    J Mol Biol; 2007 Apr; 368(1):283-301. PubMed ID: 17337005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.