BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 20070368)

  • 1. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.
    Shi X; Bi J; Morse JG; Toscano NC; Cooksey DA
    FEMS Microbiol Lett; 2010 Mar; 304(1):82-8. PubMed ID: 20070368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence.
    Guilhabert MR; Kirkpatrick BC
    Mol Plant Microbe Interact; 2005 Aug; 18(8):856-68. PubMed ID: 16134898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence.
    Osiro D; Colnago LA; Otoboni AM; Lemos EG; de Souza AA; Coletta Filho HD; Machado MA
    FEMS Microbiol Lett; 2004 Jul; 236(2):313-8. PubMed ID: 15251213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines.
    Reddy JD; Reddy SL; Hopkins DL; Gabriel DW
    Mol Plant Microbe Interact; 2007 Apr; 20(4):403-10. PubMed ID: 17427810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa.
    Andersen PC; Brodbeck BV; Oden S; Shriner A; Leite B
    FEMS Microbiol Lett; 2007 Sep; 274(2):210-7. PubMed ID: 17610515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sigma54 in the regulation of genes involved in type I and type IV pili biogenesis in Xylella fastidiosa.
    da Silva Neto JF; Koide T; Abe CM; Gomes SL; Marques MV
    Arch Microbiol; 2008 Mar; 189(3):249-61. PubMed ID: 17985115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.
    Cursino L; Galvani CD; Athinuwat D; Zaini PA; Li Y; De La Fuente L; Hoch HC; Burr TJ; Mowery P
    Mol Plant Microbe Interact; 2011 Oct; 24(10):1198-206. PubMed ID: 21692637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grapevine xylem sap enhances biofilm development by Xylella fastidiosa.
    Zaini PA; De La Fuente L; Hoch HC; Burr TJ
    FEMS Microbiol Lett; 2009 Jun; 295(1):129-34. PubMed ID: 19473259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.
    Cursino L; Li Y; Zaini PA; De La Fuente L; Hoch HC; Burr TJ
    FEMS Microbiol Lett; 2009 Oct; 299(2):193-9. PubMed ID: 19735464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of green fluorescent protein in Xylella fastidiosa is affected by passage through host plants.
    Qin X; Hartung JS
    Curr Microbiol; 2004 Sep; 49(3):215-20. PubMed ID: 15386107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.
    Roper MC; Greve LC; Warren JG; Labavitch JM; Kirkpatrick BC
    Mol Plant Microbe Interact; 2007 Apr; 20(4):411-9. PubMed ID: 17427811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa.
    Clifford JC; Rapicavoli JN; Roper MC
    Mol Plant Microbe Interact; 2013 Jun; 26(6):676-85. PubMed ID: 23441576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa.
    Fogaça AC; Zaini PA; Wulff NA; da Silva PI; Fázio MA; Miranda A; Daffre S; da Silva AM
    FEMS Microbiol Lett; 2010 May; 306(2):152-9. PubMed ID: 20370836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape.
    Chatterjee S; Newman KL; Lindow SE
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1309-15. PubMed ID: 18785826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa.
    Wallis CM; Chen J
    Phytopathology; 2012 Sep; 102(9):816-26. PubMed ID: 22671027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary perspective of Pierce's disease of grapevine, citrus variegated chlorosis, and mulberry leaf scorch diseases.
    Chen J; Hartung JS; Chang CJ; Vidaver AK
    Curr Microbiol; 2002 Dec; 45(6):423-8. PubMed ID: 12402083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease.
    Lindow S; Newman K; Chatterjee S; Baccari C; Lavarone AT; Ionescu M
    Mol Plant Microbe Interact; 2014 Mar; 27(3):244-54. PubMed ID: 24499029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of host plant Xylem fluid on growth, aggregation, and attachment of Xylella fastidiosa.
    Bi JL; Dumenyo CK; Hernandez-Martinez R; Cooksey DA; Toscano NC
    J Chem Ecol; 2007 Mar; 33(3):493-500. PubMed ID: 17252211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RpfF-dependent regulon of Xylella fastidiosa.
    Wang N; Li JL; Lindow SE
    Phytopathology; 2012 Nov; 102(11):1045-53. PubMed ID: 22877314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradigms: examples from the bacterium Xylella fastidiosa.
    Purcell A
    Annu Rev Phytopathol; 2013; 51():339-56. PubMed ID: 23682911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.