BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 20070437)

  • 1. Mechanisms of cellular communication through intercellular protein transfer.
    Ahmed KA; Xiang J
    J Cell Mol Med; 2011 Jul; 15(7):1458-73. PubMed ID: 20070437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercellular trogocytosis plays an important role in modulation of immune responses.
    Ahmed KA; Munegowda MA; Xie Y; Xiang J
    Cell Mol Immunol; 2008 Aug; 5(4):261-9. PubMed ID: 18761813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchanges of membrane patches (trogocytosis) split theoretical and actual functions of immune cells.
    LeMaoult J; Caumartin J; Carosella ED
    Hum Immunol; 2007 Apr; 68(4):240-3. PubMed ID: 17400058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity.
    Caumartin J; Lemaoult J; Carosella ED
    Transpl Immunol; 2006 Dec; 17(1):20-2. PubMed ID: 17157208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of T cell-derived exosomes in immunoregulation.
    Lu J; Wu J; Tian J; Wang S
    Immunol Res; 2018 Jun; 66(3):313-322. PubMed ID: 29804198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication.
    Thayanithy V; O'Hare P; Wong P; Zhao X; Steer CJ; Subramanian S; Lou E
    Cell Commun Signal; 2017 Nov; 15(1):46. PubMed ID: 29132390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercellular exchanges of membrane fragments (trogocytosis) between human muscle cells and immune cells: a potential mechanism for the modulation of muscular immune responses.
    Waschbisch A; Meuth SG; Herrmann AM; Wrobel B; Schwab N; Lochmüller H; Wiendl H
    J Neuroimmunol; 2009 Apr; 209(1-2):131-8. PubMed ID: 19269695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological synapse: center of attention again.
    Valitutti S
    Immunity; 2008 Sep; 29(3):384-6. PubMed ID: 18799146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exosomes and nanotubes: Control of immune cell communication.
    McCoy-Simandle K; Hanna SJ; Cox D
    Int J Biochem Cell Biol; 2016 Feb; 71():44-54. PubMed ID: 26704468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intercellular transfer to signaling endosomes.
    Marjon KD; Gillette JM
    Methods Enzymol; 2014; 534():207-21. PubMed ID: 24359956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T Cell Microvilli: Sensors or Senders?
    Kim HR; Jun CD
    Front Immunol; 2019; 10():1753. PubMed ID: 31417549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells.
    Haimovich G; Ecker CM; Dunagin MC; Eggan E; Raj A; Gerst JE; Singer RH
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9873-E9882. PubMed ID: 29078295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exosomes and their roles in immune regulation and cancer.
    Greening DW; Gopal SK; Xu R; Simpson RJ; Chen W
    Semin Cell Dev Biol; 2015 Apr; 40():72-81. PubMed ID: 25724562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned surfaces as tools to study ligand recognition and synapse formation by T cells.
    Irvine DJ; Doh J; Huang B
    Curr Opin Immunol; 2007 Aug; 19(4):463-9. PubMed ID: 17616382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercellular exchange of proteins: the immune cell habit of sharing.
    Rechavi O; Goldstein I; Kloog Y
    FEBS Lett; 2009 Jun; 583(11):1792-9. PubMed ID: 19289124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercellular transfer of antigen-presenting cell determinants onto T cells: molecular mechanisms and biological significance.
    Hudrisier D; Bongrand P
    FASEB J; 2002 Apr; 16(6):477-86. PubMed ID: 11919150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous membrane transfer through homotypic synapses between lymphoma cells.
    Poupot M; Fournié JJ
    J Immunol; 2003 Sep; 171(5):2517-23. PubMed ID: 12928401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease.
    Belting M; Wittrup A
    J Cell Biol; 2008 Dec; 183(7):1187-91. PubMed ID: 19103810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Extracellular Vesicle and Tunneling Nanotube-Mediated Intercellular Cross-Talk Between Mesenchymal Stem Cells and Human Peripheral T Cells.
    Matula Z; Németh A; Lőrincz P; Szepesi Á; Brózik A; Buzás EI; Lőw P; Német K; Uher F; Urbán VS
    Stem Cells Dev; 2016 Dec; 25(23):1818-1832. PubMed ID: 27596268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cutting edge: Membrane nanotubes connect immune cells.
    Onfelt B; Nedvetzki S; Yanagi K; Davis DM
    J Immunol; 2004 Aug; 173(3):1511-3. PubMed ID: 15265877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.