These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20070732)

  • 1. Blunting effect of hypoxia on the proliferation and differentiation of human primary and rat L6 myoblasts is not counteracted by Epo.
    Launay T; Hagström L; Lottin-Divoux S; Marchant D; Quidu P; Favret F; Duvallet A; Darribère T; Richalet JP; Beaudry M
    Cell Prolif; 2010 Feb; 43(1):1-8. PubMed ID: 20070732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen modulates the glutathione peroxidase activity during the L6 myoblast early differentiation process.
    Hidalgo M; Marchant D; Quidu P; Youcef-Ali K; Richalet JP; Beaudry M; Besse S; Launay T
    Cell Physiol Biochem; 2014; 33(1):67-77. PubMed ID: 24401635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts.
    Ogilvie M; Yu X; Nicolas-Metral V; Pulido SM; Liu C; Ruegg UT; Noguchi CT
    J Biol Chem; 2000 Dec; 275(50):39754-61. PubMed ID: 10995753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD.
    Kook SH; Son YO; Lee KY; Lee HJ; Chung WT; Choi KC; Lee JC
    Cell Biol Int; 2008 Aug; 32(8):871-8. PubMed ID: 18468460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro.
    Våtsveen TK; Sponaas AM; Tian E; Zhang Q; Misund K; Sundan A; Børset M; Waage A; Brede G
    J Hematol Oncol; 2016 Aug; 9(1):75. PubMed ID: 27581518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation.
    Reinbothe S; Larsson AM; Vaapil M; Wigerup C; Sun J; Jögi A; Neumann D; Rönnstrand L; Påhlman S
    Biochem Biophys Res Commun; 2014 Feb; 445(1):163-9. PubMed ID: 24502950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression.
    Tubaro C; Arcuri C; Giambanco I; Donato R
    J Cell Physiol; 2010 Apr; 223(1):270-82. PubMed ID: 20069545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts.
    Yi X; Tao Y; Lin X; Dai Y; Yang T; Yue X; Jiang X; Li X; Jiang DS; Andrade KC; Chang J
    Biochim Biophys Acta Mol Cell Res; 2017 Apr; 1864(4):697-707. PubMed ID: 28130125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve growth factor (NGF) influences differentiation and proliferation of myogenic cells in vitro via TrKA.
    Rende M; Brizi E; Conner J; Treves S; Censier K; Provenzano C; Taglialatela G; Sanna PP; Donato R
    Int J Dev Neurosci; 2000 Dec; 18(8):869-85. PubMed ID: 11154856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH Oxidase 4 Contributes to Myoblast Fusion and Skeletal Muscle Regeneration.
    Youm TH; Woo SH; Kwon ES; Park SS
    Oxid Med Cell Longev; 2019; 2019():3585390. PubMed ID: 31827673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts.
    Feng Y; Cao JH; Li XY; Zhao SH
    Cell Biochem Funct; 2011 Jul; 29(5):378-83. PubMed ID: 21520152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of constitutive expression of porcine IGFBP-3 on proliferation and differentiation of L6 myogenic cells.
    Xi G; Kamanga-Sollo E; Hathaway MR; Dayton WR; White ME
    Domest Anim Endocrinol; 2006 Jul; 31(1):35-51. PubMed ID: 16233971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in inhibition of myogenic differentiation of myoblasts by hypoxia.
    Li X; Wang X; Zhang P; Zhu L; Zhao T; Liu S; Wu Y; Chen X; Fan M
    Exp Physiol; 2012 Feb; 97(2):257-64. PubMed ID: 22002869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of IGF-IEa or IGF-IEb impairs myogenic differentiation.
    Matheny RW; Nindl BC
    Endocrinology; 2011 May; 152(5):1923-34. PubMed ID: 21406500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons.
    Sanchez PE; Fares RP; Risso JJ; Bonnet C; Bouvard S; Le-Cavorsin M; Georges B; Moulin C; Belmeguenai A; Bodennec J; Morales A; Pequignot JM; Baulieu EE; Levine RA; Bezin L
    Proc Natl Acad Sci U S A; 2009 Jun; 106(24):9848-53. PubMed ID: 19497871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guinea pig serum erythropoietin (EPO) selectively stimulates guinea pig erythroid progenitors: human or mouse erythroid progenitors do not form erythroid burst-forming unit colonies in response to guinea pig serum EPO.
    Stopka T; Zivny JH; Goldwasser E; Prchal JF; Necas E; Prchal JT
    Exp Hematol; 1998 Aug; 26(9):910-4. PubMed ID: 9694513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of microRNA-27a in myoblast differentiation.
    Chen X; Huang Z; Chen D; Yang T; Liu G
    Cell Biol Int; 2014 Feb; 38(2):266-71. PubMed ID: 24123794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression.
    Acs G; Zhang PJ; McGrath CM; Acs P; McBroom J; Mohyeldin A; Liu S; Lu H; Verma A
    Am J Pathol; 2003 Jun; 162(6):1789-806. PubMed ID: 12759237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo.
    Riuzzi F; Sorci G; Donato R
    J Biol Chem; 2006 Mar; 281(12):8242-53. PubMed ID: 16407300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.