BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20071078)

  • 1. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange.
    Zhang Y; Wan J; Ke Y
    J Hazard Mater; 2010 May; 177(1-3):750-4. PubMed ID: 20071078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads.
    Li D; Zhu Q; Han C; Yang Y; Jiang W; Zhang Z
    J Hazard Mater; 2015 Mar; 285():398-408. PubMed ID: 25528240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing photocatalytic degradation of methyl orange by crystallinity transformation of titanium dioxide: A kinetic study.
    Adnan F; Phattarapattamawong S
    Water Environ Res; 2019 Aug; 91(8):722-730. PubMed ID: 30849204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays.
    Liao J; Lin S; Zhang L; Pan N; Cao X; Li J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):171-7. PubMed ID: 22117568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study.
    Li Y; Li X; Li J; Yin J
    Water Res; 2006 Mar; 40(6):1119-26. PubMed ID: 16503343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic degradation of azo dye in TiO2 suspended solution.
    Hung CH; Chiang PC; Yuan C; Chou CY
    Water Sci Technol; 2001; 43(2):313-20. PubMed ID: 11380196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye.
    Kwon JM; Kim YH; Song BK; Yeom SH; Kim BS; Im JB
    J Hazard Mater; 2006 Jun; 134(1-3):230-6. PubMed ID: 16359789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate approach to hydrogenated TiO
    Pradenas M; Yáñez J; Ranganathan S; Contreras D; Santander P; Mansilla HD
    Water Environ Res; 2019 Feb; 91(2):157-164. PubMed ID: 30710408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation of methyl-orange in aqueous suspension: comparison of the performance of different polycrystalline titanium dioxide.
    Marcì G; Augugliaro V; Bianco Prevot A; Baiocchi C; García-López E; Loddo V; Palmisano L; Pramauro E; Schiavello M
    Ann Chim; 2003; 93(7-8):639-48. PubMed ID: 12940597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation.
    Min Y; Zhang K; Chen Y; Zhang Y
    Ultrason Sonochem; 2012 Jul; 19(4):883-9. PubMed ID: 22227554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of process parameters on the photodegradation of synthesized azo pyridone dye in TiO2 water suspension under simulated sunlight.
    Dostanić JM; Loncarević DR; Banković PT; Cvetković OG; Jovanović DM; Mijin DZ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):70-9. PubMed ID: 21104497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically assisted photocatalytic degradation of Acid Orange 7 with beta-PbO2 electrodes modified by TiO2.
    Li G; Qu J; Zhang X; Ge J
    Water Res; 2006 Jan; 40(2):213-20. PubMed ID: 16384594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic degradation of methyl orange using polymer-titania microcomposites.
    Coutinho CA; Gupta VK
    J Colloid Interface Sci; 2009 May; 333(2):457-64. PubMed ID: 19268963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light.
    Wang D; Zhang J; Luo Q; Li X; Duan Y; An J
    J Hazard Mater; 2009 Sep; 169(1-3):546-50. PubMed ID: 19410363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye.
    Inamuddin
    Int J Biol Macromol; 2019 Jan; 121():1046-1053. PubMed ID: 30336247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.
    Stambolova I; Shipochka CE; Blaskov V; Loukanov A; Vassilev S
    J Photochem Photobiol B; 2012 Dec; 117():19-26. PubMed ID: 23018270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17.
    Rupa AV; Manikandan D; Divakar D; Sivakumar T
    J Hazard Mater; 2007 Aug; 147(3):906-13. PubMed ID: 17331641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO
    Bai L; Wang S; Wang Z; Hong E; Wang Y; Xia C; Wang B
    Environ Pollut; 2019 May; 248():516-525. PubMed ID: 30831348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sonophotocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions.
    Wang S; Gong Q; Liang J
    Ultrason Sonochem; 2009 Feb; 16(2):205-8. PubMed ID: 18799343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.
    Yun DM; Cho HH; Jang JW; Park JW
    Water Res; 2013 Apr; 47(5):1858-66. PubMed ID: 23375600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.