BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2007118)

  • 1. Alteration of heme axial ligands in hemoglobin by organic solvents analyzed by CD, FTIR, and XANES techniques.
    Zentz C; el Antri S; Pin S; Cortes R; Massat A; Simon M; Alpert B
    Biochemistry; 1991 Mar; 30(11):2804-10. PubMed ID: 2007118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand binding processes in hemoglobin. Chemical reactivity of iron studied by XANES spectroscopy.
    Pin S; Valat P; Cortes R; Michalowicz A; Alpert B
    Biophys J; 1985 Dec; 48(6):997-1001. PubMed ID: 4092074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of globin structure on the heme in dromedary carbonmonoxyhemoglobin.
    Amiconi G; Santucci R; Coletta M; Castellano AC; Giovannelli A; Dell'Ariccia M; Della Longa S; Barteri M; Burattini E; Bianconi A
    Biochemistry; 1989 Oct; 28(21):8547-53. PubMed ID: 2605205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of globin structures on the state of the heme. Ferrous low spin derivatives.
    Perutz MF; Kilmartin JV; Nagai K; Szabo A; Simon SR
    Biochemistry; 1976 Jan; 15(2):378-87. PubMed ID: 1247524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of inositol hexakisphosphate with liganded ferrous human hemoglobin. Direct evidence for two functionally operative binding sites.
    Coletta M; Ascenzi P; Santucci R; Bertollini A; Amiconi G
    Biochim Biophys Acta; 1993 Mar; 1162(3):309-14. PubMed ID: 8457595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of ferric iron spin and allosteric equilibrium in hemoglobin.
    Marden MC; Kiger L; Kister J; Bohn B; Poyart C
    Biophys J; 1991 Oct; 60(4):770-6. PubMed ID: 1742452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of cooperative energy at the heme in liganded hemoglobins.
    Rousseau DL; Tan SL; Ondrias MR; Ogawa S; Noble RW
    Biochemistry; 1984 Jun; 23(13):2857-65. PubMed ID: 6466621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.8 A structure of carbonmonoxy-beta 4 hemoglobin. Analysis of a homotetramer with the R quaternary structure of liganded alpha 2 beta 2 hemoglobin.
    Borgstahl GE; Rogers PH; Arnone A
    J Mol Biol; 1994 Feb; 236(3):817-30. PubMed ID: 8114096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-heme interactions in hemoglobin from the mollusc Scapharca inaequivalvis: evidence from resonance Raman scattering.
    Song S; Boffi A; Chiancone E; Rousseau DL
    Biochemistry; 1993 Jun; 32(25):6330-6. PubMed ID: 8518278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heme and non-heme ligands on subunit dissociation of normal and carboxypeptidase-digested hemoglobin. Gel filtration and flash photolysis studies.
    Chiancone E; Anderson NM; Antonini E; Bonaventura J; Bonaventura C; Brunori M; Spagnuolo C
    J Biol Chem; 1974 Sep; 249(18):5689-94. PubMed ID: 4413057
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of solvent viscosity on the heme-pocket dynamics of photolyzed (carbonmonoxy)hemoglobin.
    Findsen EW; Friedman JM; Ondrias MR
    Biochemistry; 1988 Nov; 27(24):8719-24. PubMed ID: 3242601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton nuclear Overhauser effect investigation of the heme pockets in ligated hemoglobin: conformational differences between oxy and carbonmonoxy forms.
    Dalvit C; Ho C
    Biochemistry; 1985 Jul; 24(14):3398-407. PubMed ID: 4041419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational substates and dynamic properties of carbonmonoxy hemoglobin.
    Cupane A; Leone M; Militello V
    Biophys Chem; 2003 May; 104(1):335-44. PubMed ID: 12834852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relations in hemoglobin as determined by x-ray absorption spectroscopy.
    Eisenberger P; Shulman RG; Brown GS; Ogawa S
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):491-5. PubMed ID: 1061148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-CO religation in photolyzed hemoglobin: a time-resolved Raman study of the Fe-CO stretching mode.
    Schneebeck MC; Vigil LE; Friedman JM; Chavez MD; Ondrias MR
    Biochemistry; 1993 Feb; 32(5):1318-23. PubMed ID: 8448140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers.
    Baudin V; Pagnier J; Kiger L; Kister J; Schaad O; Bihoreau MT; Lacaze N; Marden MC; Edelstein SJ; Poyart C
    Protein Sci; 1993 Aug; 2(8):1320-30. PubMed ID: 8401217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source of residual Bohr effect in hemoglobin oxidation.
    Bull C; Goncher G; Deutschman CS; Hoffman BM
    J Biol Chem; 1977 May; 252(10):3128-30. PubMed ID: 16881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure.
    Borgstahl GE; Rogers PH; Arnone A
    J Mol Biol; 1994 Feb; 236(3):831-43. PubMed ID: 8114097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Fe-CO geometry in the subunits of carbonmonoxy hemoglobin M Boston using femtosecond infrared spectroscopy.
    Lian T; Locke B; Kitagawa T; Nagai M; Hochstrasser RM
    Biochemistry; 1993 Jun; 32(22):5809-14. PubMed ID: 8504100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple internal reflectance infrared spectra of variably hydrated hemoglobin and myoglobin films: effects of globin hydration on ligand conformer dynamics and reactivity at the heme.
    Brown WE; Sutcliffe JW; Pulsinelli PD
    Biochemistry; 1983 Jun; 22(12):2914-23. PubMed ID: 6871172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.