BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 20071212)

  • 1. Recent progress in stereoselective synthesis with aldolases.
    Clapés P; Fessner WD; Sprenger GA; Samland AK
    Curr Opin Chem Biol; 2010 Apr; 14(2):154-67. PubMed ID: 20071212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold.
    Samland AK; Rale M; Sprenger GA; Fessner WD
    Chembiochem; 2011 Jul; 12(10):1454-74. PubMed ID: 21574238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments.
    Samland AK; Sprenger GA
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):253-64. PubMed ID: 16614860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral catalysts dually functionalized with amino acid and Zn2+ complex components for enantioselective direct aldol reactions inspired by natural aldolases: design, synthesis, complexation properties, catalytic activities, and mechanistic study.
    Itoh S; Kitamura M; Yamada Y; Aoki S
    Chemistry; 2009 Oct; 15(40):10570-84. PubMed ID: 19746465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and enzymatic routes to dihydroxyacetone phosphate.
    Schümperli M; Pellaux R; Panke S
    Appl Microbiol Biotechnol; 2007 May; 75(1):33-45. PubMed ID: 17318530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleophile Promiscuity of Natural and Engineered Aldolases.
    Hernández K; Szekrenyi A; Clapés P
    Chembiochem; 2018 Jul; 19(13):1353-1358. PubMed ID: 29645339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In water, on water, and by water: mimicking nature's aldolases with organocatalysis and water.
    Mase N; Barbas CF
    Org Biomol Chem; 2010 Sep; 8(18):4043-50. PubMed ID: 20617260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in biomolecular engineering.
    Ryu DD; Nam DH
    Biotechnol Prog; 2000; 16(1):2-16. PubMed ID: 10662483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of aldolases for exploitation in synthetic organic chemistry.
    Bolt A; Berry A; Nelson A
    Arch Biochem Biophys; 2008 Jun; 474(2):318-30. PubMed ID: 18230325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redesigning Aldolase Stereoselectivity by Homologous Grafting.
    Bisterfeld C; Classen T; Küberl I; Henßen B; Metz A; Gohlke H; Pietruszka J
    PLoS One; 2016; 11(6):e0156525. PubMed ID: 27327271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes.
    Fessner WD; Helaine V
    Curr Opin Biotechnol; 2001 Dec; 12(6):574-86. PubMed ID: 11849940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.
    Windle CL; Berry A; Nelson A
    Curr Opin Chem Biol; 2017 Apr; 37():33-38. PubMed ID: 28113093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering aldolases as biocatalysts.
    Windle CL; Müller M; Nelson A; Berry A
    Curr Opin Chem Biol; 2014 Apr; 19(100):25-33. PubMed ID: 24780276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate and L-fuculose-1-phosphate aldolases in aqueous borate buffer.
    Garrabou X; Calveras J; Joglar J; Parella T; Bujons J; Clapés P
    Org Biomol Chem; 2011 Dec; 9(24):8430-6. PubMed ID: 22042499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
    Jennewein S; Schürmann M; Wolberg M; Hilker I; Luiten R; Wubbolts M; Mink D
    Biotechnol J; 2006 May; 1(5):537-48. PubMed ID: 16892289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases.
    Suau T; Alvaro G; Benaiges MD; López-Santín J
    Biotechnol Bioeng; 2006 Jan; 93(1):48-55. PubMed ID: 16302255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering aldolases for asymmetric synthesis.
    Widersten M
    Methods Enzymol; 2020; 644():149-167. PubMed ID: 32943143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases.
    Laurent V; Darii E; Aujon A; Debacker M; Petit JL; Hélaine V; Liptaj T; Breza M; Mariage A; Nauton L; Traïkia M; Salanoubat M; Lemaire M; Guérard-Hélaine C; de Berardinis V
    Angew Chem Int Ed Engl; 2018 May; 57(19):5467-5471. PubMed ID: 29542859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact.
    Rouvinen J; Andberg M; Pääkkönen J; Hakulinen N; Koivula A
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6215-6228. PubMed ID: 34410440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (
    Kim T; Stogios PJ; Khusnutdinova AN; Nemr K; Skarina T; Flick R; Joo JC; Mahadevan R; Savchenko A; Yakunin AF
    J Biol Chem; 2020 Jan; 295(2):597-609. PubMed ID: 31806708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.