These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 20071212)

  • 21. Dihydroxyacetone phosphate aldolase catalyzed synthesis of structurally diverse polyhydroxylated pyrrolidine derivatives and evaluation of their glycosidase inhibitory properties.
    Calveras J; Egido-Gabás M; Gómez L; Casas J; Parella T; Joglar J; Bujons J; Clapés P
    Chemistry; 2009 Jul; 15(30):7310-28. PubMed ID: 19579240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of aldolase-based catalysts for the synthesis of organic chemicals.
    Lee SH; Yeom SJ; Kim SE; Oh DK
    Trends Biotechnol; 2022 Mar; 40(3):306-319. PubMed ID: 34462144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in industrial biocatalysis.
    Nestl BM; Nebel BA; Hauer B
    Curr Opin Chem Biol; 2011 Apr; 15(2):187-93. PubMed ID: 21195018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric biocatalysis with microbial enzymes and cells.
    Wohlgemuth R
    Curr Opin Microbiol; 2010 Jun; 13(3):283-92. PubMed ID: 20434391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyruvate aldolases in chiral carbon-carbon bond formation.
    Walters MJ; Toone EJ
    Nat Protoc; 2007; 2(7):1825-30. PubMed ID: 17641651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispelling the myths--biocatalysis in industrial synthesis.
    Schoemaker HE; Mink D; Wubbolts MG
    Science; 2003 Mar; 299(5613):1694-7. PubMed ID: 12637735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.
    Hernández K; Parella T; Joglar J; Bujons J; Pohl M; Clapés P
    Chemistry; 2015 Feb; 21(8):3335-46. PubMed ID: 25640727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications.
    Falcicchio P; Wolterink-Van Loo S; Franssen MC; van der Oost J
    Extremophiles; 2014 Jan; 18(1):1-13. PubMed ID: 24166576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of two metal-dependent pyruvate aldolases related by convergent evolution: substrate specificity, kinetic mechanism, and substrate channeling.
    Wang W; Baker P; Seah SY
    Biochemistry; 2010 May; 49(17):3774-82. PubMed ID: 20364820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C-C bond formation.
    Pohl M; Lingen B; Müller M
    Chemistry; 2002 Dec; 8(23):5288-95. PubMed ID: 12432496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry.
    Purkarthofer T; Skranc W; Schuster C; Griengl H
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):309-20. PubMed ID: 17607575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates.
    Chambre D; Guérard-Hélaine C; Darii E; Mariage A; Petit JL; Salanoubat M; de Berardinis V; Lemaire M; Hélaine V
    Chem Commun (Camb); 2019 Jul; 55(52):7498-7501. PubMed ID: 31187106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combinatorial and computational challenges for biocatalyst design.
    Arnold FH
    Nature; 2001 Jan; 409(6817):253-7. PubMed ID: 11196654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New emerging bio-catalysts design in biotransformations.
    Palomo JM; Filice M
    Biotechnol Adv; 2015; 33(5):605-13. PubMed ID: 25560932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: pyruvate transaminase pathway in Escherichia coli.
    Ingram CU; Bommer M; Smith ME; Dalby PA; Ward JM; Hailes HC; Lye GJ
    Biotechnol Bioeng; 2007 Feb; 96(3):559-69. PubMed ID: 16902948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of a stereoselective biocatalytic synthesis by substrate and enzyme engineering: 2-hydroxy-(4'-oxocyclohexyl)acetonitrile as the model.
    Avi M; Wiedner RM; Griengl H; Schwab H
    Chemistry; 2008; 14(36):11415-22. PubMed ID: 19006143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and synthesis of chiral Zn2+ complexes mimicking natural aldolases for catalytic C-C bond forming reactions in aqueous solution.
    Itoh S; Sonoike S; Kitamura M; Aoki S
    Int J Mol Sci; 2014 Jan; 15(2):2087-118. PubMed ID: 24481060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.