These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20071268)

  • 1. Control of a powered ankle-foot prosthesis based on a neuromuscular model.
    Eilenberg MF; Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):164-73. PubMed ID: 20071268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
    Markowitz J; Krishnaswamy P; Eilenberg MF; Endo K; Barnhart C; Herr H
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1621-31. PubMed ID: 21502131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V; Buckley JG
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successful preliminary walking experiments on a transtibial amputee fitted with a powered prosthesis.
    Versluys R; Lenaerts G; Van Damme M; Jonkers I; Desomer A; Vanderborght B; Peeraer L; Van der Perre G; Lefeber D
    Prosthet Orthot Int; 2009 Dec; 33(4):368-77. PubMed ID: 19947821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.
    Wolf SI; Alimusaj M; Fradet L; Siegel J; Braatz F
    Clin Biomech (Bristol, Avon); 2009 Dec; 24(10):860-5. PubMed ID: 19744755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface.
    Williams RJ; Hansen AH; Gard SA
    J Biomech Eng; 2009 Mar; 131(3):035002. PubMed ID: 19154079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system.
    Fradet L; Alimusaj M; Braatz F; Wolf SI
    Gait Posture; 2010 Jun; 32(2):191-8. PubMed ID: 20457526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD; Klute GK; Neptune RR
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees.
    Alimusaj M; Fradet L; Braatz F; Gerner HJ; Wolf SI
    Gait Posture; 2009 Oct; 30(3):356-63. PubMed ID: 19616436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
    Sinitski EH; Hansen AH; Wilken JM
    J Biomech; 2012 Feb; 45(3):588-94. PubMed ID: 22177669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling neuromuscular effects of ankle foot orthoses (AFOs) in computer simulations of gait.
    Crabtree CA; Higginson JS
    Gait Posture; 2009 Jan; 29(1):65-70. PubMed ID: 18657977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental characterization of the moment-angle curve during level and slope locomotion of transtibial amputee: Which parameters can be extracted to quantify the adaptations of microprocessor prosthetic ankle?
    Davot J; Thomas-Pohl M; Villa C; Bonnet X; Lapeyre E; Bascou J; Pillet H
    Proc Inst Mech Eng H; 2021 Jul; 235(7):762-769. PubMed ID: 33784889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.