These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 20071269)

  • 41. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis.
    Hargrove L; Miller L; Turner K; Kuiken T
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
    Kaluf B; Gart MS; Loeffler BJ; Gaston G
    J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.
    Na Y; Kim SJ; Jo S; Kim J
    Med Biol Eng Comput; 2017 Aug; 55(8):1507-1518. PubMed ID: 28054301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier.
    D'Accolti D; Dejanovic K; Cappello L; Mastinu E; Ortiz-Catalan M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():208-217. PubMed ID: 36327175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 50. User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability.
    Powell MA; Kaliki RR; Thakor NV
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):522-32. PubMed ID: 24122566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand.
    Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D
    J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Residuals of autoregressive model providing additional information for feature extraction of pattern recognition-based myoelectric control.
    Pan L; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7270-3. PubMed ID: 26737970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myoelectric training systems.
    Dawson MR; Carey JP; Fahimi F
    Expert Rev Med Devices; 2011 Sep; 8(5):581-9. PubMed ID: 22026623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.
    Atzori M; Gijsberts A; Castellini C; Caputo B; Hager AG; Elsig S; Giatsidis G; Bassetto F; Müller H
    J Rehabil Res Dev; 2016; 53(3):345-58. PubMed ID: 27272750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dimensionality analysis of forearm muscle activation for myoelectric control in transradial amputees.
    McClanahan A; Moench M; Fu Q
    PLoS One; 2020; 15(12):e0242921. PubMed ID: 33270686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
    Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.