These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 20071274)
1. A self-paced and calibration-less SSVEP-based brain-computer interface speller. Cecotti H IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):127-33. PubMed ID: 20071274 [TBL] [Abstract][Full Text] [Related]
2. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences. Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724 [TBL] [Abstract][Full Text] [Related]
3. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448 [TBL] [Abstract][Full Text] [Related]
4. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI. Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923 [TBL] [Abstract][Full Text] [Related]
5. An SSVEP-based brain-computer interface for the control of functional electrical stimulation. Gollee H; Volosyak I; McLachlan AJ; Hunt KJ; Gräser A IEEE Trans Biomed Eng; 2010 Aug; 57(8):1847-55. PubMed ID: 20176528 [TBL] [Abstract][Full Text] [Related]
6. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924 [TBL] [Abstract][Full Text] [Related]
7. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier. Luo A; Sullivan TJ J Neural Eng; 2010 Apr; 7(2):26010. PubMed ID: 20332551 [TBL] [Abstract][Full Text] [Related]
8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513 [TBL] [Abstract][Full Text] [Related]
9. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. Wu Z; Yao D J Neural Eng; 2008 Mar; 5(1):36-43. PubMed ID: 18310809 [TBL] [Abstract][Full Text] [Related]
10. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550 [TBL] [Abstract][Full Text] [Related]
11. How many people are able to control a P300-based brain-computer interface (BCI)? Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601 [TBL] [Abstract][Full Text] [Related]
12. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Bin G; Gao X; Yan Z; Hong B; Gao S J Neural Eng; 2009 Aug; 6(4):046002. PubMed ID: 19494422 [TBL] [Abstract][Full Text] [Related]
14. A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller. Martens SM; Leiva JM J Neural Eng; 2010 Apr; 7(2):26003. PubMed ID: 20168003 [TBL] [Abstract][Full Text] [Related]
15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ; Rosipal R; Matthews B IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300 [TBL] [Abstract][Full Text] [Related]
16. SSVEP-based Bremen-BCI interface--boosting information transfer rates. Volosyak I J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847 [TBL] [Abstract][Full Text] [Related]
17. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing. Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547 [TBL] [Abstract][Full Text] [Related]
18. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli. Yoshimura N; Itakura N Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534 [TBL] [Abstract][Full Text] [Related]
19. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses. Baek HJ; Kim HS; Heo J; Lim YG; Park KS J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913 [TBL] [Abstract][Full Text] [Related]
20. A high-speed brain speller using steady-state visual evoked potentials. Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]