These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Studies of DNA dumbbells. II. Construction and characterization of DNA dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14). Amaratunga M; Snowden-Ifft E; Wemmer DE; Benight AS Biopolymers; 1992 Jul; 32(7):865-79. PubMed ID: 1391635 [TBL] [Abstract][Full Text] [Related]
3. The structure and application of oligodeoxyribonucleotides containing modified, degenerate bases. Brown DM; Lin PK Nucleic Acids Symp Ser; 1991; (24):209-12. PubMed ID: 1841286 [TBL] [Abstract][Full Text] [Related]
4. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14). Paner TM; Amaratunga M; Benight AS Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636 [TBL] [Abstract][Full Text] [Related]
5. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Mandell KE; Vallone PM; Owczarzy R; Riccelli PV; Benight AS Biopolymers; 2006 Jun; 82(3):199-221. PubMed ID: 16345003 [TBL] [Abstract][Full Text] [Related]
6. Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA. Doktycz MJ; Goldstein RF; Paner TM; Gallo FJ; Benight AS Biopolymers; 1992 Jul; 32(7):849-64. PubMed ID: 1391634 [TBL] [Abstract][Full Text] [Related]
7. Alkyl phosphotriester modified oligodeoxyribonucleotides. VI. NMR and UV spectroscopic studies of ethyl phosphotriester (Et) modified Rp-Rp and Sp-Sp duplexes, (d[GGAA(Et)TTCC])2. Summers MF; Powell C; Egan W; Byrd RA; Wilson WD; Zon G Nucleic Acids Res; 1986 Sep; 14(18):7421-36. PubMed ID: 3763408 [TBL] [Abstract][Full Text] [Related]
8. Efficient synthesis of DNA dumbbells using template-induced chemical ligation in double-stranded polynucleotides closed by minihairpin fragments. Kuznetsova SA; Merenkova IN; Kanevsky IE; Shabarova ZA; Blumenfeld M Antisense Nucleic Acid Drug Dev; 1999 Feb; 9(1):95-100. PubMed ID: 10192294 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5'-d(CGCXAATTYGCG)-3'. Bergstrom DE; Zhang P; Johnson WT Nucleic Acids Res; 1997 May; 25(10):1935-42. PubMed ID: 9115360 [TBL] [Abstract][Full Text] [Related]
10. Contribution of loops and nicks to the formation of DNA dumbbells: melting behavior and ligand binding. Rentzeperis D; Ho J; Marky LA Biochemistry; 1993 Mar; 32(10):2564-72. PubMed ID: 8448114 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and evaluation of oligonucleotides incorporating novel artificial nucleobases for the selective formation of non-natural type triplexes. Nakashima S; Matsuura N; Nagatsugi F; Maeda M; Sasaki S Nucleic Acids Symp Ser; 1997; (37):33-4. PubMed ID: 9585985 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of oligodeoxyribonucleotides containing degenerate bases and their use as primers in the polymerase chain reaction. Lin PK; Brown DM Nucleic Acids Res; 1992 Oct; 20(19):5149-52. PubMed ID: 1408830 [TBL] [Abstract][Full Text] [Related]
13. NMR studies of backbone-alkylated DNA: duplex stability, absolute stereochemistry, and chemical shift anomalies of prototypal isopropyl phosphotriester modified octanucleotides, (Rp,Rp)- and (Sp,Sp)-(d-[GGA(iPr)ATTCC])2 and -(d-[GGAA(iPr)TTCC])2. Lawrence DP; Chen WQ; Zon G; Stec WJ; Uznanski B; Broido MS J Biomol Struct Dyn; 1987 Apr; 4(5):757-83. PubMed ID: 3270527 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of a trinucleotide A-T-A bulge loop within a DNA duplex. Rosen MA; Shapiro L; Patel DJ Biochemistry; 1992 Apr; 31(16):4015-26. PubMed ID: 1314655 [TBL] [Abstract][Full Text] [Related]
15. Sugar modified oligonucleotides. I. Carbo-oligodeoxynucleotides as potential antisense agents. Perbost M; Lucas M; Chavis C; Pompon A; Baumgartner H; Rayner B; Griengl H; Imbach JL Biochem Biophys Res Commun; 1989 Dec; 165(2):742-7. PubMed ID: 2557019 [TBL] [Abstract][Full Text] [Related]
16. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and properties of oligonucleotide derivatives containing a hydrophobic fluorescent dye at the 2'-position. Mitsui T; Hayashi H; Yamana K; Nakano H Nucleic Acids Symp Ser; 1997; (37):69-70. PubMed ID: 9586003 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of oligodeoxyribonucleotides containing terminal phosphates. NMR, UV spectroscopic and thermodynamic analysis of duplex formation of [d(pGGAATTCC)]2, [d(GGAATTCCp)]2 and [d(pGGAATTCCp)]2. Bower M; Summers MF; Kell B; Hoskins J; Zon G; Wilson WD Nucleic Acids Res; 1987 Apr; 15(8):3531-47. PubMed ID: 3575099 [TBL] [Abstract][Full Text] [Related]
19. Specifically alkylated DNA fragments. Synthesis and physical characterization of d[CGC(O6Me)GCG] and d[CGT(O6Me)GCG]. Kuzmich S; Marky LA; Jones RA Nucleic Acids Res; 1983 May; 11(10):3393-403. PubMed ID: 6856460 [TBL] [Abstract][Full Text] [Related]
20. Targeting of nucleic acid junctions: addressing to a branch point an oligodeoxynucleotide conjugated with an intercalator. Ali OM; Franch T; Gerdes K; Pedersen EB Nucleic Acids Res; 1998 Nov; 26(21):4919-24. PubMed ID: 9776754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]