These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 20071374)
1. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry. Shih MD; Hsieh TY; Lin TP; Hsing YI; Hoekstra FA Plant Cell Physiol; 2010 Mar; 51(3):395-407. PubMed ID: 20071374 [TBL] [Abstract][Full Text] [Related]
2. Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Shih MD; Hsieh TY; Jian WT; Wu MT; Yang SJ; Hoekstra FA; Hsing YI Plant Sci; 2012 Nov; 196():152-9. PubMed ID: 23017910 [TBL] [Abstract][Full Text] [Related]
3. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Soulages JL; Kim K; Walters C; Cushman JC Plant Physiol; 2002 Mar; 128(3):822-32. PubMed ID: 11891239 [TBL] [Abstract][Full Text] [Related]
4. Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Hundertmark M; Popova AV; Rausch S; Seckler R; Hincha DK Biochem Biophys Res Commun; 2012 Jan; 417(1):122-8. PubMed ID: 22155233 [TBL] [Abstract][Full Text] [Related]
5. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Shih MD; Lin SC; Hsieh JS; Tsou CH; Chow TY; Lin TP; Hsing YI Plant Mol Biol; 2004 Nov; 56(5):689-703. PubMed ID: 15803408 [TBL] [Abstract][Full Text] [Related]
6. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Soulages JL; Kim K; Arrese EL; Walters C; Cushman JC Plant Physiol; 2003 Mar; 131(3):963-75. PubMed ID: 12644649 [TBL] [Abstract][Full Text] [Related]
7. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. Goyal K; Tisi L; Basran A; Browne J; Burnell A; Zurdo J; Tunnacliffe A J Biol Chem; 2003 Apr; 278(15):12977-84. PubMed ID: 12569097 [TBL] [Abstract][Full Text] [Related]
8. Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Popova AV; Hundertmark M; Seckler R; Hincha DK Biochim Biophys Acta; 2011 Jul; 1808(7):1879-87. PubMed ID: 21443857 [TBL] [Abstract][Full Text] [Related]
9. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Tolleter D; Jaquinod M; Mangavel C; Passirani C; Saulnier P; Manon S; Teyssier E; Payet N; Avelange-Macherel MH; Macherel D Plant Cell; 2007 May; 19(5):1580-9. PubMed ID: 17526751 [TBL] [Abstract][Full Text] [Related]
10. A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Tolleter D; Hincha DK; Macherel D Biochim Biophys Acta; 2010 Oct; 1798(10):1926-33. PubMed ID: 20637181 [TBL] [Abstract][Full Text] [Related]
11. Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from Hincha DK; Zuther E; Popova AV Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33919135 [TBL] [Abstract][Full Text] [Related]
12. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Popova AV; Rausch S; Hundertmark M; Gibon Y; Hincha DK Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1517-25. PubMed ID: 25988244 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Wolkers WF; McCready S; Brandt WF; Lindsey GG; Hoekstra FA Biochim Biophys Acta; 2001 Jan; 1544(1-2):196-206. PubMed ID: 11341929 [TBL] [Abstract][Full Text] [Related]
14. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat. Koubaa S; Bremer A; Hincha DK; Brini F Sci Rep; 2019 Mar; 9(1):3720. PubMed ID: 30842512 [TBL] [Abstract][Full Text] [Related]
15. An abundant LEA protein in the anhydrobiotic midge, PvLEA4, acts as a molecular shield by limiting growth of aggregating protein particles. Hatanaka R; Hagiwara-Komoda Y; Furuki T; Kanamori Y; Fujita M; Cornette R; Sakurai M; Okuda T; Kikawada T Insect Biochem Mol Biol; 2013 Nov; 43(11):1055-67. PubMed ID: 23978448 [TBL] [Abstract][Full Text] [Related]
16. Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. Liu G; Xu H; Zhang L; Zheng Y Plant Cell Physiol; 2011 Jun; 52(6):994-1002. PubMed ID: 21531760 [TBL] [Abstract][Full Text] [Related]
17. Conformational change in a single molecular species, beta3, of beta-conglycinin in acidic ethanol solution. Tsumura K; Enatsu M; Kuramori K; Morita S; Kugimiya W; Kuwada M; Shimura Y; Hasumi H Biosci Biotechnol Biochem; 2001 Feb; 65(2):292-7. PubMed ID: 11302161 [TBL] [Abstract][Full Text] [Related]
18. Identification of Late Embryogenesis Abundant (LEA) protein putative interactors using phage display. Kushwaha R; Lloyd TD; Schäfermeyer KR; Kumar S; Downie AB Int J Mol Sci; 2012; 13(6):6582-6603. PubMed ID: 22837651 [TBL] [Abstract][Full Text] [Related]
19. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216 [TBL] [Abstract][Full Text] [Related]
20. Alpha-helix to beta-sheet transition in long-chain poly-l-lysine: Formation of alpha-helical fibrils by poly-l-lysine. Cieślik-Boczula K Biochimie; 2017 Jun; 137():106-114. PubMed ID: 28315381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]